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Abstract. Scene text reading continues to be of interest for many
reasons including applications for the visually impaired and automatic
image indexing systems. Here we propose a novel end-to-end scene text
detection algorithm. First, for identifying text regions we design a novel
Convolutional Neural Network (CNN) architecture that aggregates local
surrounding information for cascaded, fast and accurate detection. The
local information serves as context and provides rich cues to distinguish
text from background noises. In addition, we designed a novel grouping
algorithm on top of detected character graph as well as a text line refine-
ment step. Text line refinement consists of a text line extension module,
together with a text line filtering and regression module. Jointly they
produce accurate oriented text line bounding box. Experiments show
that our method achieved state-of-the-art performance in several bench-
mark data sets: ICDAR 2003 (IC03), ICDAR 2013 (IC13) and Street
View Text (SVT).

1 Introduction

Scene text provides rich semantic cues about an image. Many useful applications,
such as image indexing system and autonomous driving system could be built
on top of a robust scene text reading algorithm. Thus detecting and recognizing
scene text has recently attracted great attention from both research community
and industry.

Even with the increasing attention in reading text in the wild, scene text
reading is still a challenging problem. Unusual font, distortion, reflection and
low contrast make the problem still unsolved. Algorithms for scene text detection
could be classified into three categories [1]: (1) sliding window based methods,
(2) region proposal based methods, and (3) hybrid methods. Sliding window
based approaches [2,3] try to determine whether a fixed-sized small image patch
is a text area or not. Such methods need to examine every locations in different
scales in an exhaustive manner, thus are very time consuming. Region-based
methods [4–9] propose a set of connected components as candidate text regions
with predefined rules. These approaches greatly reduce the number of image
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patches needed to be examined, however, they may miss some text areas or
generate regions with too many characters connected. Hybrid methods [10,11]
integrate the region based methods with the sliding window methods to combine
the advantages of both categories. One of the common components in these
methods is a classifier that determines whether a given image patch or a region
is text or not. Given the success of the convolutional neural networks (CNN) in
object detection and recognition [12], they have also been used as the text/non-
text classifier in scene text detection tasks [8,13,14]. The strong power of CNN
makes scene text detection more robust to outlier noises. A typical pipeline is to
first generate a set of region proposals and then apply a binary classifier trained
on text/non-text data. Although this method is efficient but even CNN trained
on millions of samples are not stable for robust scene text reading on complex
scenes. This is because context is often necessary for disambiguation. It is needed
to determine whether a vertical line is an “I”, a “1”, or part of background noise
like the space between bricks or the edge of a window. In Fig. 4(a), we show some
examples of text-like background noise which are confusing, even to people, when
appearing without their contexts.

Recently, Zhu et al. [15] proposed to use highly-semantic context, which tried
to explore the assumption that text are typically on specific background, such
as sign board, but seldom on the others, for e.g., sky in natural image. However,
modeling text which potentially exists in a wide variety of places is impossible
with an exhaustive manner, and whether a new class of semantic object which
does not appear in the training set will hurt results is in doubt. In addition, in
a lot images that are not purely natural, text could be placed in unusual places,
e.g. sky. In those cases, the model might hurt the performance. In this paper, we
define a region’s local context to be its horizontal surroundings. A text localiza-
tion algorithm is proposed which efficiently aggregates local context information
in detecting candidate text regions. The basic idea is that the surrounding infor-
mation of a candidate region usually contains strong cues about whether the
region is text or background noise similar to text, and thus helping our model
localize text more accurately. Some examples of these context images are shown
in Fig. 4(b). In addition, we also propose a grouping algorithm to form lines from
verified regions and a line refinement step to extend text lines by searching for
missing character components, as well as to regress text lines to obtain accurate
oriented bounding boxes.

To be more specific, our major contributions are the following aspects:

1. A method that efficiently aggregates local information for cascaded and accu-
rate classification of proposed regions. This step could be part of any other
region based framework.

2. An effective grouping algorithm as well as a novel text line refinement step.
Text line refinement includes a Gaussian Mixture Model (GMM) based text
line extension module to find new character components, and jointly, a slid-
ing window based oriented bounding box regression and filtering module.
They are efficient and robust for post processing, and give an accurate ori-
ented bounding box, instead of a mere horizontal bounding box.
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3. A cascaded end-to-end detection pipeline for accurate scene text detection
in unconstrained images. State-of-the-art performance is achieved in IC03,
IC13 and SVT data sets.

In the following sections, we first describe related works on scene text detec-
tion in Sect. 2. Our method will be described in detail in Sect. 3 and experimental
results are shown in Sect. 4. Several text detection results from images using the
proposed algorithm are shown in Fig. 1.

Fig. 1. Scene text that have been successfully detected by our proposed systems. Images
are from IC13 and SVT dataset

2 Related Work

Scene text detection is much more challenging than Optical Character Recogni-
tion (OCR). Early work in scene text detection focused on sliding window based
approaches. Chen and Yuille [3] proposed an end-to-end scene text reading sys-
tem which used Adaboost algorithm for aggregating weak classifiers trained on
several carefully designed, hand crafted features into a strong classifier. They
used sliding window to find candidate text regions. However, the scales of text
lines in scene images vary a lot so sliding window based methods are typically
very inefficient. Region based methods have recently received more attention.
Most works focused on two region based methods: (1) Stroke width transform
(SWT) [6] and its variants [7,16]; (2) Extreme Region (ER) detector [5,8] and
Maximally Extreme Region (MSER) detector [9]. SWT explicitly explores the
assumption that text consists of strokes with nearly constant width. It first
detects edges in the image and tries to group pixels into regions based on the
orientation of the edge. However, its performance is severely decreased when the
text are of low contrast or in unusual font style. ER based methods [5,8,9,17]
are now popular since they are computationally efficient and achieve high recall
as well. Neumann and Matas [5] proposed an ER based text detection algorithm
which utilized several carefully designed region features, such as hole area ratio,
Euler number, etc. However, the designed region features are not representative
enough to remove background noise that is similar to text. Several other works
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[17,18] follows a similar patterns in the classification step. These region features
are fast to compute, but they typically lack the ability of robust classification.

More recently, CNN based methods have been used with significant success
[8,13]. The ability to synthesize data for training, which was specifically explored
in [19], has greatly accelerated the research in scene text detection due to the
unlimited amount of training data. Several works [9,14], trained on synthetic
images, have achieved the state-of-the-art performance in real image as well.

However, even with the introduction of CNN models and synthetic image
generation for training, it is still hard for the CNN models to achieve good
performance in some complex scenarios. We observe that the main reason of this
incorrect classification lies on the fact that some characters have simple shapes
that are also contained in non-text objects and CNNs are often fooled into
classifying such objects as text. In this work, we explore ways to overcome these
challenges and propose a system for efficient and accurate scene text detection.

3 Methodology

Our proposed detection pipeline is as follows. First, an ER detector is conducted
on 5 channels of an input image. For each detected region, we first classify it to get
a coarse prediction and filter out most non-text regions. Then the local context is
aggregated to classify the remaining regions in order to obtain a final prediction.
Text lines will be formed on top of a character component graph by grouping
the verified regions with similar properties together. A text line refinement step
is also designed to further filter out false positive and obtain accurate oriented
bounding boxes. Several successive image examples of the proposed method can
be seen in Fig. 2.

Fig. 2. Images from the scene text detection pipeline. From left to right: (1) Region
proposals; (2) Coarse predictions; (3) Predictions after aggregating local context; (4)
Final detected text lines.
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3.1 Cascaded Classification and Local Context Aggregation

Context information is critical for object detection and recognition [20,21]. Pre-
vious region based methods often focus on classifying each region independently
and the image patch is cropped tightly from a generated region [8]. Here, we
consider the local context of a given region as its local surroundings and argue
that surrounding information should be incorporated in determining whether
a given region should be classified as text or not. We observe that characters,
which are often represented as simple shapes such as “I” or “l”, cannot be well
distinguished from background noises that are similar to them. However, text in
an image is often represented as lines of characters, and for a given region, its
local surroundings give rich information about whether it is text or not. There
have been works that explored relation between text regions before, such as
[17,18]. They proposed to use graphcut on top of MSER region graph to refine
the results. Instead, we try to aggregate more higher level information in classifi-
cation step of each region by the proposed network, and we show that this aggre-
gation provides rich information. Some background regions, which are difficult
to be distinguished from text when cropped from a tight bounding box, can be
accurately predicted by our model after we aggregate this context information.

Design Rationale: The architecture of the proposed framework is shown in
Fig. 3. We call this network a text local feature aggregation network (TLFAN).
This is a two-column CNN with joint feature prediction on the top. It is designed
for cascaded classification that will be explained in the next part. One CNN
branch with fully connected layers is for coarse prediction, and we refer to this
branch as standard CNN. The other branch takes an input with aggregated local
information to produce a context vector, and we refer it as context CNN. The
first column of the architecture is for learning features from the tight image
patch which we are focusing at, and the other is for learning features from its
surroundings. This CNN structure is specifically designed for scene text reading

Fig. 3. The proposed TLFAN architecture for scene text detection. Left: CNN structure
of the proposed network. The bottom 3 layers of convolution and pooling are shared,
and for context branch, another CNN layer and pooling layer is added to produce
deeper representation. Right: The whole architecture of the network. One column is
for the given patch that we are trying to classify. The other is for extracting context
information for this patch, and the generated feature vector will be further used to give
an accurate prediction of the region.
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and several design rationales are here: (1) Local context typically provides rich
information about whether a specific region is text or not. Some background noise
can not be well distinguished with text from a mere tight bounding box. In Fig. 4,
there are some example image patches cropped from IC13 where traditional
text/non-text binary classification will easily fail. But our model, by aggregating
local context, can robustly distinguish it from text. (2) Even though here we
consider text lines with arbitrary orientation, horizontal neighborhood already
provides rich clues of whether the given region is text or not. (3) Since the input
to the proposed TLFAN and its context have the same scale, we can use shared
CNN parameters for the two columns and thus reduce the number of parameters
that need to be learned. We also tried to use central surround network [22] which
will consider a larger surrounding region. However, by doing so, we will have to
learn more parameters either in CNN part or in fully connected part. In addition,
We found that this will not improve the performance as much as the proposed
manner, and it is likely to cause overfitting, since it considers information that
is mostly unrelated.

Fig. 4. Cropped image patches which demonstrate that local context helps in distin-
guishing between background noise and text. (a) The original image patches cropped
tightly from the generated regions. (b) The horizontal context images which corre-
spond to the region on the left, respectively. All the examples here are background
noises which easily cause false positive if we only consider a tight bounding box for
classification. Instead, our model can efficiently aggregate local context, so as to give
accurate prediction.

Region Proposal and Cascaded Classification: We use an ER detector
as our region proposal because of its efficiency and robustness. We extract ERs
from RGB, Gray scale and gradient of intensity channels. In order to achieve high
recall, approximately thousands of regions will be generated from the 5 channels
for each image. We preprocess each region as described in [8] and resize them
into 32× 32. We then run the standard CNN branch to remove false positives in
a similar manner as [8]. For regions with aspect ratios larger than 3.0 or smaller
than 1/3, we will do sliding window on top of it since each region might contain
blurred text with several characters connected, and in that case, we should not
simply resize and classify them. In our experiment, 91.5% of the regions will be
removed, and it achieves 92% recall on the IC13 testing set.

After this step, the retained regions will be passed into the context branch
to generate context vectors. To be more specific, we calculate the width and
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height of the region, and extend the patch in the horizontal direction so that
the resulting context input patch is with 3 times the width of the original image
patch. Mean value is padded when there is not enough space in the image for
the context input. Because of the strong ability of CNNs in extracting high level
information, this context vector provides rich cues in helping with the classifica-
tion of the given region. This step can further remove some false positives that
are similar to text and only regions with high confidence of text will be retained.
In IC13 testing set, 94.5% regions will be removed and it achieves 91% recall.

In the final prediction, we still consider the two column structure instead
of only the context branch for tow reasons: (1) The generated feature vector of
standard CNN already contains rich information and it actually produces the
feature of the region we are looking at. (2) It will be much easier to train since
the standard CNN already produce a really meaningful result. For the context
column, they only need to ‘figure out’ that in some certain cases, the input is
not a text even though the feature produced by standard CNN “says” that it is
close to text. Such cases include, but not limited to, repetitive patterns, corner
of objects and so on.

Training: The proposed model is more difficult to train than a simple text/non-
text classifier. We follow the same manner as described in [14,19] by synthesizing
image patches for training which provides unlimited number of training data.
Since our proposed architecture needs context information, our synthetic pos-
itive images need to cover different situations that will happen in real natural
images, such as characters with one or two near neighboring characters. Ran-
domly cropped images with their context from several image sources will be
considered as negative samples. Several example images for training are shown
in Fig. 5. In order to train a better classifier, a two-step training scheme is intro-
duced. First we train a character recognizer with negative samples. This is a 46
classes classification problem, and the positive 45 classes contain all 10 digits
and letters with both capitalized or lower cases. Here we merged several similar
shaped characters into one class. For example, ‘O’ and ‘o’, ‘0’ will be merged
into one class. We train with negative log likelihood as the loss function:

NLL(θ,D) = −
∑

i

log(Y = yi|xi, θ) (1)

and the 46 classes training makes the learned filters better than binary text/non-
text training.

Fig. 5. Several training samples. Left: positive training samples and their context input
patches. Right: negative training samples and their context input patches.
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The parameters of the trained convolutional layers are then used to initialize
the proposed TLFAN architecture and only the fully connected layers will be
tuned. After the loss become stable, we train the two parts jointly with smaller
learning rate for finetuning. In addition to this, it is necessary to collect harder
examples, and we will explain in Sect. 3.2.

Figure 6 shows several images demonstrating the effectiveness of the proposed
network. It can effectively use local context to determine whether a given region
is text or not, and thus make the prediction more robust. The generated saliency
image is the raw output by sliding the classifier on the whole image. We could
see that even a well-trained text/non-text classifier [13] has problem when back-
ground is noisy. However, by aggregating local context, our model gives much
more robust performance.

Fig. 6. The comparison of performance between a state-of-the-art text/non-text clas-
sifier proposed in [13], and our method in two challenging image in IC13 test set. From
left to right: (1) Original image; (2) The saliency image generated by [13]; (3) The
saliency image generated by our method; (4) Final detected text lines by our method.

3.2 Hard Example Mining

In this section, we are going to describe how we collect hard training samples.
This could also been seen as a way of bootstrapping. Mining hard examples is a
critical step for training accurate object detector, and here we focus on hard neg-
ative examples. One of the reasons is that most training examples cropped from
negative images have few geometric patterns. Training on these negative exam-
ples will make the model less robust to noisy backgrounds. So here we collect
more hard negative training data from two sources: (1) ImageNet: We specif-
ically collect images from several challenging topics, such as buildings, fences,
and trees, and windows. These are objects that typically cause troubles in text
detection, since their shapes are close to text. (2) Synthetic hard negative
samples: we also synthesized a large bunch of negative samples. These samples
are not texts but with similar structures as texts, such as stripes and clut-
tered rectangles. We follow a typical, iterative manner by training until the loss
becomes stable and testing on these data to collect hard examples.
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We found that this step improved the robustness of the text detector,
especially on some hard testing images. These hard examples are also used in
the later part for line refinement training.

3.3 Character Component Graph

Grouping text lines from regions is conducted after classification. This step differ-
entiates text detection and object detection. Previous methods [6] typically used
relatively heuristic rules to connect text components. This will cause troubles
when there are false positives regions. Here we treat it as an assignment prob-
lem on top of a character component graph, and the best assignment without
conflicts will be chosen based on scores calculated by several text line features as
well as several empirical and useful selection standards. In this section, we first
describe the ways of how we build the graph. Then we describe how we opti-
mize on the assignment of each character component. The proposed algorithm
is illustrated in Fig. 7.

Character Graph: We first build a connected graph on top of the extracted
regions, and each node represents a verified region, and each edge represents the
neighborhood relation of the text components. We define a function Sim which
calculates the similarity between two regions with several low level properties:

(1) Perceptual divergence p, which is calculated as the KL divergence between
the color histogram of two regions:

∑
i xp(i) ∗ log(xp(i)

yp(i)
) where x and y rep-

resent two regions and xp(i) represent the ith entry in its color histogram.
(2) Relative Aspect ratio: a = xAspectRatio

yAspectRatio
.

(3) Height ratio h = xHeight

yHeight
.

(4) Stroke width ratio s = xStrokeWidth

yStrokeWidth
, which is calculated by distance transform

on the original region.

We trained a logistic regression on these four region features extracted
from IC13 training set to determine whether two given regions are similar.
For each region, we further define its neighbor as: y ∈ N(x) if Dis(x, y) <
θ1 and Sim(x, y) > θ2,∀x, y ∈ R, where R represents all the regions that have
been verified by previous process, and N(x) represents neighbor of region x. Dis
means the distance between the center of the two regions. In our experiment, we
set threshold θ1 as 3 ∗ Max(xHeight, xWidth) where xHeight, xWidth means the
height and width of the region. We set θ2 as 0.5 to filter out regions with less
probability as being its neighbor.

Stable Pair: We first define stable pair as pair of regions x and y where they
belong to neighbor of each other, and they has a similarity score Sim(x, y) > 0.8.
In addition, their distance should be no more than twice the shortest distance
from all other neighbors to the region. This definition aims at obtaining more
“probable pairs”, since only pairs which “prefer” each other as their neighbors
will be considered as “stable”. After going through all the regions in O(n) time
complexity, we will obtain a set of stable pairs. Outliers are typically not able
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to form a stable pair with real characters, since real character will not prefer
an outlier as its neighbor. In the first row of image in Fig. 7, the defined stable
pair criterion successfully prevent generating vertical lines as possible candidate
lines. Note that 0.8 is selected empirically from SVT training set. The overall
performance is not too sensitive to it.

Optimization: In order to optimize on the assignment of each region to one
of lines, for each stable pair, we estimate its orientation based on their center
points, and then conduct a greedy search algorithm to find components that align
with the current line. Note that it is possible to find conflicting lines because two
lines might share the same region components. In order to resolve the conflict,
a score is calculated for each line based on the following properties: the aver-
age, standard deviation, max value, min value of the pairwise angle, perceptual
divergence, size ratio and distance of neighbor components along the line. We
will calculate these 16 features in total and a Random Forest [23] is trained to
give each line an alignment score. For conflict alignment, we will choose the the
best assignment. Here, several empirical but useful standards are also applied.
For example, assignment which creates more long lines will be preferred than
assignment which creates more short lines as shown in Fig. 7. This step aims at
resolving the different possible alignments and find true text lines.

Fig. 7. The proposed algorithm which could effectively resolve conflicted candidate
lines and find best line assignment of text regions. The final detected lines could be in
any orientation. From left to right: (a) The constructed character component graph.
(b) A set of generated stable pairs which will be used to create candidate lines. (c)
Candidate lines represented as different colored bounding boxes. (d) Detected text
lines. (Color figure online)

3.4 Line Extension and Refinement

After we generate lines of regions, a line refinement step is taken to finalize
the results. This step aims at two targets: (1) extend lines so as to find missing
components. (2) filtering out false positive and predict a tight oriented bounding
box. They aim at finding a better bounding box that cover the whole word and
it’s important for an end-to-end system which incorporates text recognition since
the performance of recognition highly relies on accurate bounding boxes.
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Gaussian Mixture Model Based Line Extension: Even with carefully
designed classifier and grouping algorithm, there still might be some letters in a
line that are not found in the previous steps. Here we propose a simple model
to recover the proposed lines.

The model is based on the assumption that lines of characters typically have
different color distribution with its direct background, and characters in one line
typically follow the same color distribution. The algorithm pipeline is shown in
Fig. 8. For each line that has been found by previous approaches with more than
2 regions, we crop the patch from the lines and estimate a GMM on the color
of the patch. The Gaussian component associated with foreground (text region)
is estimated by a voting mechanism: (1) we calculate the skeleton from the
region patch; (2) for all pixels in the skeleton patch, we obtain which Gaussian
component it belongs to by a simple voting mechanism conducted among these
pixels. The reason for only using skeleton pixels lies on the fact that pixels
that are close to the boundary are not accurate enough for color distribution
estimation. For each line, we consider an square image patch whose side length
is twice the height of the line, with its location on the two end of the lines. We
estimate the color distribution in the region and a MSER detector is conducted
on top of predicted color probability image. We filter out MSER regions whose
size is too large or too small when compared to the height of the line. We then
classify the retained region as being a text or not using the standard CNN
branch in TFLAN. If its probability is larger than 0.4, then we will group it
into the lines. If we find one additional character, the GMM is updated and
will try to find more characters until nothing is found. Previous methods [17,18]
used a graphcut algorithm on top of the extracted regions which serves as similar
purpose. However, if the graphcut is directly conducted on all the verified regions,
it is still in doubt that whether it will also create more false positives. Here we
use a more conservative method and only consider regions which could be easily
attached to the current line that we already found.

Fig. 8. Our proposed line extension pipeline: (a) The original image with the detected
lines; (b) Cropped line image patch we used for estimation of GMM; (c) The skeleton
of all the region components; (d) Cropped image patch whose color distribution needs
to be estimated; (e) Predicted color probability image. Each pixel of it is predicted
from the estimated GMM model; (f) MSER result on the estimation patch. Because
of the large contrast in the predicted image patch, there are only few bounding box
that we need to verify; (g) After running the standard CNN branch and non-maximum
suppression; (h) The final detected line. (Color figure online)
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Line Filtering and Sliding Window Regression: In this section, we propose
a novel joint line filtering and regression model. Our model is based on making
prediction in a sliding window manner on all the text lines that have been verified
in the previous steps. Existing methods [14] typically have two steps: (1) word-
level verification. (2) bounding box regression. A CNN model is used for filtering
and regression. Since fully connected layer only takes fixed sized input, the image
patch needs to be resized in order to fit into the network. However, the length of
text lines could vary according to the font, and number of characters. It is not
desirable to resize an image patch with a text line of 2 to 3 characters to the
same size as a text line with 10 characters. Instead, we consider joint regression
and filtering in a sliding window manner.

The proposed architecture is shown in Fig. 9(a). The CNN is taken directly
from the previous detection architecture. The proposed CNN model takes an
input of 48 × 64 color image patch, and gives 7 prediction. One prediction is
a simple part-of-word/non-word prediction which predicts whether the input
patch containing part of word, or several characters. It is trained with nega-
tive log likelihood loss. The rest of 6 values all represent vertical coordinates
because we are doing in a sliding window manner along the text line. Two of
them are the minimal and maximal vertical values of the text in the current
patch, and they are the same as the vertical coordinates that are predicted in
traditional bounding box regression. The other four values represents the min-
imal and maximal vertical values in left and right side of the patch which are
used to predict an oriented bounding box. Some training examples are shown in
Fig. 9(b). We train the regression model with standard mean square error loss:
MSE(x, y) = −∑

i(xi−yi)2. Where x, y represent the predicted coordinates, and
the ground truth coordinates, respectively. By predicting these four values, an
oriented bounding box could be estimated. Since there are only a few lines in an

Fig. 9. Our proposed line refinement illustration: (a) The proposed architecture which
used the CNN from detection part. Training is only on the fully connected layers for
classification and regression. (b) Several examples of training images. The red lines are
drawn from minimal and maximal vertical coordinates. The green dots are the vertical
coordinates for oriented bounding box. (c) Several testing result images. The oriented
bounding box is drawn with green lines instead of dots for better visualization of the
orientation. (Color figure online)
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image, even sliding window will not need much computation. Several predicted
results have been shown in Fig. 9(c) on images cropped from IC13 and SVT data
sets.

In order to refine the text lines based on the proposed architecture, we first
crop the text line patch from the image, and resize the height of the text line to
48. We slide a window of height 48 and width 64 on the cropped patch. Back-
ground noise lines will be filtered out by part-of-word/non-word classification. If
the patch is predicted as part-of-word by the classifier, we will perform the ori-
ented bounding box regression on it. A step by step example is shown in Fig. 10.
Here we only show lines with text on them.

Fig. 10. Our proposed line refinement pipeline. (a) For each cropped lines, we do sliding
window prediction and merge the results. (b) Several line regression results based on
the proposed framework. The red lines correspond to standard regression, and the green
lines represent oriented regression. (Color figure online)

4 Experiments and Evaluation

In this section, we present an evaluation of the proposed method on several
benchmark datasets. We report the precision, recall and F-measure scores on
our detection results.

Implementation Details: We implemented our algorithms in python and torch
7 [24] on a work station with 64 GB RAM and Nvidia GPU tesla k40 and 16
processors (3000 MHz). All the generation of region proposals and post process-
ing with different channels are parrallized.

ICDAR Robust Reading: We tested our algorithm on IC13 and IC03 testing
sets. IC13 and IC03 testing sets contain 233 and 251 testing images, respec-
tively. For IC13, it provides an online evaluation system where we evaluated our
proposed method. For IC03, we evaluate our result according to the metric in
[25]. The results are shown in Table 1. Evaluation shows that our algorithm gives
good performance in both data sets.

Street View Text: The SVT data set contains 249 testing images used for
evaluation. It was first introduced by Wang and Belongie [31]. One of the prob-
lems om the data set is that it is not fully annotated: some text in the image
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Table 1. Localization performances on: left: IC13 (%), right: IC03 (%) data sets. Bold
number outperforms previous methods. ‘Our model no post’ represents final results
without line extension and refinement steps [5,6,9,16–18,26–30].

method precision recall F-measure

Neumann[5] 73 65 69
Shi[18] 83 63 72
Bai et[26] 79 68 73
Zamberletti[9] 86 70 77
Tian[27] 85 76 80
Zhang[28] 88 74 80

Our model no post 89 73 80
Our model 90 75 81

method precision recall F-measure

Li[17] 79 64 71
Yao[16] 69 66 67
Kim[29] 78 65 71
Yi[30] 73 67 66
Epshtein[6] 73 60 66
Zamberletti[9] 71 74 70

Our model 84 70 76

are not included in the annotation. This problem has been mentioned in [14],
and we call this annotation as partial annotated. Our proposed algorithm could
efficiently detect most of the text in images and thus the unlabeled text will
decrease the precision of detection result and makes it hard to compare with
other methods. So we manually labeled all the text in the images following sim-
ple rules: (1) text is not too blurry to read by human; (2) it contains more than
2 characters. We call this version fully annotated dataset and we tested our algo-
rithm on both versions of the dataset for evaluation. The performance is shown
in Table 2. Figure 11 illustrates several examples of partial annotated dataset,
fully annotated dataset as well as our detection results. Experiments on the fully
annotated dataset shows that our detection algorithm have good performance in
SVT dataset as well.

Table 2. Text detection performance on SVT. The bold results outperforms the pre-
vious state-of-the-art results. (1) Partial annotated : detection recall measured with the
partial annotation. The accuracy here does not makes sense, so we only tested its recall.
(2) Fully annotated : detection precision, recall, F-measure with full annotation.

Partial annotated Fully annotated

Recall Precision Recall F-measure

Jaderberg et al. [14] 0.71 - - -

Our model 0.75 0.87 0.73 0.79

Limitation: Our proposed method achieved fairly good results in terms of pre-
cision, recall, and F-measure on standard datasets. However, it can still fail
on several extremely challenging cases: (1) Text lines that are too blurry will
cause problem in accurate region proposal generation as well as classification.
(2) Strong reflection, too low contrast will still cause troubles in the detection.
(3) Curved text lines might cause incomplete detection. Figure 12 shows several
failure cases that our algorithm cannot get good results. They are all challenging
images in terms of text reading, and some of them are even hard for human to
read.
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Fig. 11. For each pair of images, left: the original incomplete annotation, right: detec-
tion result of our model as well as the fully annotated ground truth. The fully annotated
dataset provides oriented bounding box annotation. Green boxes represent our detected
result which matches the ground truth. Yellow boxes represent the ground truth. (Color
figure online)

Fig. 12. Example images where we failed to detect all the lines or detected the wrong
lines. The green boxes are the text lines that are correctly detected. The blue boxes
are text lines that we fail to detect, and the red boxes are false positives, or incomplete
detection. (Color figure online)

5 Conclusions and Future Work

Here we proposed a novel scene text detection algorithm which efficiently aggre-
gates local context information into detection as well as a novel two step text
line refinement. Experiments show that our pipeline works well on several chal-
lenging images and achieved state-of-the-art performance on three benchmark
data sets. Our future work will focus on extending our work in order to combine
scene text recognition into an end-to-end scene text reading system. An image
indexing system using text information retrieval will be implemented to help
the visually impaired with shopping. Other applications for complex text such
as sign reading will also be explored.
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