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ABSTRACT
Automatic composition optimization is a vital technique for compu-
tational photography systems. Balance in composition is one of the
agreed-upon principles of aesthetics and is commonly employed
as a visual feature in many computational aesthetics studies. It
refers to an equilibrium of visual weights within composition. Ex-
isting composition optimization and aesthetic quality assessment
systems utilize the saliency map to represent balance. However,
saliency map methods fail to account for high-level visual features
that are important for compositional balance. Our work establishes
a framework for the purpose of evaluating the relationship between
visual features and compositional balance. �is provides a be�er
understanding of compositional balance and help improve com-
position optimization performance. A dataset based on a human
subject study was created with photos representing main balance
concepts such as symmetric, dynamic balance, and imbalance. We
take the visual center given by human subjects as the dependent
variable and the center-of-mass for each type of visual features
as the predictor variable. Based on a linear regression model, we
can assess how much each type of visual features contributes to
the prediction of the visual center. Our �ndings show that high-
level visual elements can help increase prediction accuracy with
signi�cance on top of saliency maps. Speci�cally, extra information
provided through human and dominant vanishing point detection
is statistically signi�cant for assessing balance in the composition.
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1 INTRODUCTION
Capturing beauty has served as a longstanding quest in the history
of humanity. �is quest has led to e�orts to understand creativity
and the production process of aesthetic artifacts. Such e�orts can be
observed in the daily lives of individuals from professional artists
to amateurs. For instance, hikers spend extra time taking pictures
of scenery they like. A designer a�empts to come up with an
aesthetically appealing and a�ention-grabbing design for a Web
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Figure 1: Balance in composition is an important aesthetic
concept. It can be employed in di�erent ways to elicit di�er-
ent visual impact on the viewers. In the �rst row, the �rst
image shows an example of symmetric balance, whereas the
second image is imbalanced. In the second row, we show two
examples of dynamic balance.

site or even a t-shirt. �erefore, there is a need of clear-cut rules to
construct good compositions in a controlled manner.

To develop these rules and understand their mechanisms, psy-
chology, psychophysics, and art experts have been conducting stud-
ies with human subjects [2, 23]. Fine arts experts have compiled
aesthetic guidelines drawn from careful observation of aesthetic
works and recognition of pa�erns among them [18]. Computer sci-
ence has joined this quest, seeing it as an interesting application of
arti�cial intelligence. �e question “How can we make computers
appreciate aesthetics?” has garnered signi�cant a�ention. Data-
driven approaches have improved a computer’s ability to provide
numerical values for images’ aesthetic quality [5].

One of the aforementioned guidelines is balance in composition.
A balanced composition can be described as a composition whose
visual elements achieve visual equilibrium as a whole, whether it
is a photograph or a painting. �ese elements could be objects,
texture, color, and shapes, among others. In its simplest form, bal-
ance can be achieved by using pure symmetry along vertical or
horizontal axes of the image (Fig. 1, �rst image). Meanwhile, an
imbalanced image has the e�ect of creating tension and raising
uneasy, disquieting responses in the viewer. For example, the pur-
posefully placed yellow truck in the second image in Fig. 1 draws
our a�ention to the lower-le� corner of the image. However, there
is another type of balance that is much more intriguing. �e experts
call it “dynamic balance” or “asymmetrical balance”. �is type of
balance occurs when an area of a certain visual element is balanced



out with another element with di�erent visual properties [18]. �e
tree stump and milky way, or the tower and series of poles demon-
strate this phenomenon. Balance is a highly subjective concept that
di�erent observers of the same photograph can have very di�erent
views. �e subjectivity makes modeling it highly challenging.

�e concept of balance plays an important role in computational
aesthetic studies on the automated aesthetic layout of magazines
and Web pages; automated image cropping and retargeting; seam
carving; and aesthetic quality assessment [3, 13]. �e representation
of balance has been primarily calculated through the center of mass
of a saliency map [20]. A well-studied topic in computer vision, the
saliency map of an image indicates those points at which humans
give more visual a�ention to the image. �ere have been di�erent
methods proposed to predict the saliency map of an image.

It seems natural to employ saliency maps to represent balance in
composition, as saliency maps and balance are both related to visual
a�ention. In this paper, we challenge this assumed relationship
and investigate whether there are other elements that can improve
the representation of visual balance for computational aesthetic
systems. �is relationship is bridged through an analysis of visual
center and saliency maps. To the best of our knowledge, no study
to date has created a larger dataset compared to empirical arts
studies, where the relationship between aesthetics, visual balance,
and visual elements have been investigated through subject studies
with small image sets containing few hundred images. �erefore,
we created an image dataset by compiling images from a popular
photograph-sharing Web site. �is dataset demonstrates di�erent
balance characteristics, according to art literature. �e visual cen-
ters of the photos were obtained from individuals’ responses to
an online survey designed in line with empirical art studies [22].
Linear models were employed to measure the predictive power of
saliency. �e �ndings indicate that the predictive power of the
linear model improves if the system accounts for the visual weight
of humans, and dominant vanishing point (perspective point).

�e research question guiding this study can thus be de�ned as
“How well can saliency maps predict visual balance? How can this
prediction be improved?” Our contributions are as follows:

• We created an image dataset that shows di�erent balance
characteristics, which are symmetry, asymmetrical (dy-
namic) balance, and imbalance, with visual center votes
from people.

• We expanded on visual features other than saliency that
may be related to visual balance.

• We evaluated the relationship between saliency maps and
visual center, hence visual balance, and showed that in-
cluding high-level features such as human and vanishing
point detection improved performance.

2 RELATEDWORK
Study of balance has been investigated from two aspects. First, art
and psychology literature looked into how compositional balance
works, and then, computer science community leveraged it as a
component in a computational aesthetic framework. �is section
gives the related work to the mentioned e�orts.
Balance in Art. Gestalt school, one of the most important schools
in art, de�nes balance as the equilibrium of visual weights in the

design or artifact, and it was considered as an important principle
for aesthetics [8]. According to a discussion in [2], there was a
perceptional �eld of push and pull in the frame, as a force �eld. �e
eye assigns an equilibrium position to an object within the push
and pull �eld. If the object is not on one of these equilibrium points,
the composition feels restless to the eye. Hence, balance is claimed
to be one of the factors of aesthetics.

Balance phenomenon has been studied by empirical art
researchers. A study where the participants were asked to put
a fulcrum under “paintings of accepted merit”, with original and
cropped versions, was conducted [22]. It turned out most of the
paintings were not balanced in the center of the frame. Another
study that compared center of mass (CoM) of random and artistic
photographs showed that CoM of artistic photos is aligned with
axial center [23]. �e same study demonstrated that the CoM can
be shi�ed by cropping an image, and people prefer cropped pictures
where CoM aligned with the axial center. However, these studies
failed to cover a larger picture base to test these �ndings and the
pictures used were less related to multimedia.
Balance in Multimedia and Vision. Compositional balance has
raised interest in multimedia and computer vision communities
as computational aesthetics became an interesting research topic.
�e subjectivity of aesthetics has been widely accepted by di�er-
ent research communities; however, data-driven approaches have
shown that some consensus can be reached [15]. Upon this, the
data-driven approach found another area of application to make
visual data such as photographs automatically more aesthetic.

In computational aesthetics, the balance has been considered as a
small feature to be included with some ad hoc methods and its de�-
nition has not been clear. It was employed in composition optimiza-
tion, image a�ention retargeting, seam carving, automated layout
design, and photo quality assessment systems [10, 13, 20, 21, 26, 36].
�e bo�om-up saliency maps of images were utilized to quantify
balance in compositional optimization [20]. In photo aesthetic qual-
ity assessment, saliency is utilized to measure how much a photo
adheres to balance and the rule of thirds principles [21]. Bo�om-
up saliency map was employed to place text on less busy parts of
the background image for automated magazine cover design [13].
�ese approaches were based on the center of mass and rely on
low-level features, e.g., local orientations and intensity. However,
they did not take other factors into account such as object or shapes
whereas balance is related to higher-level features [17].

3 MOTIVATION
In this section, we expand on saliency map concept that is frequently
employed by aforementioned computational aesthetic studies, and
state the problem by presenting cases where bo�om-up saliency
map methods fail in visual balance representation.
Saliency. �e salient regions of an image refer to the parts of the
image on which the viewer’s eyes spend more time (�xate) while
seeing the image. In particular, “saliency intuitively character-
izes some parts of a scene–which could be objects or regions–that
appear to an observer to stand out relative to their neighboring
parts” [4]. Saliency has been considered from two cognitive angles,
which are bo�om-up and top-down. Top-down approaches focus
on tasks, memory, learning and related heuristics [27]. Saliency is



Figure 2: Saliency analyses o�en fail to capture the key elements in attention. Columns: original image, Achanta, GBVS, DRFI,
Context aware, imSig, covSal, corSal, UHF, SWD, Murray, FES, MDF.

Category Name Description

Patch-based

DRFI [14] Dissimilarity measure de�ned among segmented regions in multi scales.
Context Aware [9] Dissimilarity de�ned among patches with a spatial distance constraint for context.
Achanta [1] Frequency information through di�erent channels is leveraged for dissimilarity.
CovSal [7] Covariance among patches is employed for dissimilarity information.
SWD [6] �e dissimilarity patches represented in reduced dimensional space is utilized.

Graph-based
GBVS [11] Pixel information such as color, intensity, orientations are put into a graph, where edges represent a

dissimilarity measure. �e graph is treated as a Markov Field to obtain an activation map.

Center-surround
CorSal [30] �e corner cues obtained via application of Gabor �lters are used for saliency information.
FES [33] Bayesian framework between visual features and saliency within a moving center-surround window.
Murray Model [25] Center-surround �lter size and other parameters are learned through GMM.

Others

ImSig [12] Saliency map based on Inverse DCT of image signature for foreground-bacground separation.
UHF [32] Unsupervised hierarchy of visual features for saliency
MDF [19] Multi scale feature learning through CNN for saliency inference.
Shallow Convnet [28] A shallow neural network is followed by a deep network in order to regress saliency values.

Table 1: State-of-the-art bottom-up saliency methods are summarized according to their approaches.

more tailored according to the task at hand, which, for instance,
may be counting humans in the picture.

Bo�om-up models focus on low-level visual properties. �is
class of approaches a�empts to fuse di�erent low-level features in
accordance with how human visual system works [35]. �e theory
states that primate visual system pays extra visual a�ention to
di�erent or anomalous regions in the image. �e dissimilarity of
regions within an image is represented via fusion of low-level visual
features such as local orientations, texture, colors, curvatures, and
intensity. Table 1 summarizes approaches to capture saliency which
can be further categorized into (i) graphical models; (ii) patch-based
models; (iii) cognitive models; and (iv) others .
Observations and Problem. As explained above, bo�om-up ap-
proaches consider pre-a�entive visual a�ention that plays a role
in viewer’s unconscious reaction. �is nature constrains these
methods more to low-level features which are processed at earlier
stages of the human visual system. When the center of mass of
a bo�om-up saliency map is evaluated to check whether visual
a�ention is lopsided or aligned with the physical center of the
image, some problems arise. Fig. 2 shows a few examples where

saliency methods fail to capture the elements that actually have
more or less visual weight than saliency map assigns to them. �e
�rst picture in Fig. 2 contains two humans that balance each other
visually. At �rst glance, almost half of the methods tested fail to
capture humans, whereas it was shown in a study that humans,
faces, body parts, text bodies, and animals get more a�ention than
usual [16]. Among the methods tested, the ones that successfully
capture humans in pictures assign a�ention to other parts of images
which actually do not have that much visual weight compared to
humans. �e text area above the person in the second image is
also mostly missed, but may not have that much visual weight as it
covers a small area in the image. More interestingly, saliency maps
employed capture the light beams of the subway and lines created
by subway station �oor to great extent. An interesting point about
these lines is that they are parallel in reality, but appear to con-
verge on the photograph plane. �is structure leads the eye from
le� to the convergence point, which has a di�erent visual weight.
Saliency methods do not succeed in re�ecting this concept. �e
third image shows another failure of saliency map regarding im-
ages that contain high contrast regions. �e bird silhoue�e perched
up on the railings is surrounded with a relatively light region of



clouds. Saliency methods successfully get the outline of the bird
and the railing bars, which are regions of high contrast. But in a
higher scale the bird itself is di�erent from the cloud structure, so
it has more visual weight. �ese imperfections in saliency maps
regarding visual weights indicate that a new approach that takes
high-level features into account can be highly bene�cial.

4 THE METHOD
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Figure 3: Our framework for visual center prediction.

Our visual center prediction framework contains four parts as
summarized in (Fig. 3). First two parts are related to obtaining the
image set and participant ratings related to visual center of the
images. �e third component is the extraction of low- and high-
level features, and translating into a vector representation. Finally,
we predict the visual center through linear regression scheme. �is
section provides details about the �rst three components.

4.1 Data Collection
We detail the image set creation, interface design for acquiring
ground-truth labels, and feature extraction from the image set.
Image Set. �e visual data for the initial study was mainly col-
lected from a popular photo-sharing Website, Flickr, using the query
‘urban’ and they were ranked according to their interestingness.
�ese images were categorized into four classes, ‘symmetrical bal-
ance’, ‘dynamic balance’, ’imbalanced’, and ‘hard to tell’, by the
authors based on consensus. While categorizing the images, the
de�nitions in [17, 18] were taken as merit. A�er eliminating images
that are not related to balance concept, 779 images were collected
in total. In the end, the number of samples in these classes are
41, 362, 90, and 447, respectively. �e fact that the total number
of balanced images was 403 and that for imbalanced images was
90 caused an imbalance in the data. Hence, 286 more imbalanced
images were selected based on consensus from the query results for
‘travel’, ‘Hawaii’, ‘jungle’, ‘party’, ‘galaxy’, and ‘vacation’. Hence
we had 403 balanced and 376 imbalanced images. �e reason these
query words were selected is that urban pictures were dominated
by man-made structures. By adding images belonging to these
query we ensured that more natural scenic images with di�erent
properties were included in our dataset.
Interface Design. An online study was designed to collect data
from the participants. �e challenges of designing an online survey
about compositional balance started with quanti�cation or measure
of balance. In empirical art �eld, some studies put a fulcrum under

the picture and asked participants to move the lever till the picture
feels balanced on the fulcrum [22, 23]. In these studies, the nor-
malized balance scores were recorded in an interval [-1, 1], where
0 was the exact center of an image, and -1 and 1 are the extreme
edges. In a similar fashion, this concept was transferred to our
online study, this is one of the �rsts in online balance studies to
the best of our knowledge. We recorded the balance values in the
interval [0,100], where 50 was the exact center of the image and 0
and 100 represented the extreme edges (Fig. 4).

Figure 4: User interface for online human subject study. �e
slider bar below the image allows the participant to indicate
the visual center.

�e second challenge was coming up with a concise meaningful
tutorial that included a de�nition of compositional balance and
how it was achieved. As mentioned in the previous section, simple
de�nitions of compositional balance and its methods were given as
in [17, 18] along with sample images. Once the participant selects a
participant ID, he/she must read through a tutorial explaining all of
the concepts that are being studied in the survey. �e ways compo-
sitional balance is achieved are detailed with example images and
text in the tutorial which also set the same rules for the compilation
of the image set. A�er the tutorial, the participant enters the survey.
�e survey contains a white background with the test image in
the center-le�, a slider bar beneath the image. �e slider bar starts
with the mark on the center - which correlates to 50 in our study.
�e participant is asked to ‘move slider in a way that the image
feels visually balanced at that point’. If the participant needs any
assistance or wants to refer to the tutorial, he/she is free to by going
back “Home”. For each image, we limited the number of ratings
to �ve. Each participant is only presented with a speci�c image
once. In addition, to encourage breaks, each participant only does
a batch of 100 images at once. When the participant has completed
ratings for 100 batches, or there are no more images to rate, he/she
will enter a screen informing him/her of that. It’s also possible to
start a new batch right a�er one is completed. If the participant has
been inactive on one single page for up to six minutes, the survey



will time out and the participant will be returned to the home page.
By the end of the survey time period, the important data we were
able to collect consisted of the participant IDs, ratings of the center
of mass. �e study was taken by eight participants.
Human Subject Study and Data Properties. �e ratings were
collected from undergraduate, graduate students and faculty who
participated in the study. Each image received �ve ratings. �e
average rating position of slider, pi , for each image i is calculated.
�e mean slider position across all images p∗ is 50.17 with standard
deviation of 6.7.

pi =
1
N

∑
u ∈Participantsi

pui , p∗ =
1
M

∑
i
pi , (1)

where Participantsi is the set of participants who have rated for
the image i . When images with highest standard deviation in slider
position were inspected, the border cases where people showed dis-
agreement were observed. It was understood that people may have
di�erent opinions of symmetry, and were confused with dynamic
balance for some cases. It was also observed that some partici-
pants agreed on the imbalanced category of an image, but the slider
ratings pointed to di�erent sides for imbalance. �is seems to indi-
cate that people can have a di�erent understanding of the concept.
�ese results showed that there were cases of agreement for images
which raises hope to achieve a consensus.

(a) (b) (c)

(d) (e) (f)

Figure 5: Example images with low and high standard devia-
tion for average slider position. Images with lower standard
deviation are shown in �rst row, where slider positions over-
lap and the position is illustrated with a single triangle. Sec-
ond row shows images with higher standard deviation. Par-
ticipant ratings are marked as triangles to show the spread
of slider positions.

�e images where participants had a high level of agreement
were chosen through a standard deviation threshold on slider po-
sitions. �e standard deviation of slider position rates is expected
to be low where participants agree. �e thresholding process re-
sulted in a total of 593 images with a high level of agreement. Fig. 5
displays some pictures with low (�rst row) and high (second row)
standard deviation. As the high standard deviation images are ob-
served, it is seen that people assign di�erent weights to di�erent

parts for the same picture. While some participants gave more
weight to the si�ing man closer to the camera or the girl in red
dress, some deemed the weight distribution equal (Fig. 5d and 5f).
�e weight of the dark phone booth varies across participants as
seen in Fig. 5e.

4.2 High- and Low-Level Features For Balance
�is subsection explores the features that may be helpful in pre-
dicting the visual center of an image.
Saliency. As a model of visual a�ention distribution over an image,
saliency maps were employed. Bo�om-up saliency approaches suit
more to our purpose, because we are interested in unconscious
visual response to the composition balance, which depends on
low-level features. A representative of each category of saliency
methods in Table 1 were selected for our study, including context-
aware saliency, image signature, graph-based, UHF, MDF and non-
parametric low-level vision saliency (Murray).
Informative Objects. People pay more a�ention to the objects
that provide di�erent kinds of information about the picture, which
can be considered as high-level features. �e information can be
emotional cues, actual knowledge, or message. One of the promi-
nent source of information in pictures are humans. One another
object class is text in the image. Inclusion of the spatial distribution
of these object along with saliency could improve the representa-
tion accuracy of visual balance. Out of 779 images in our dataset,
there were 228 images that contained humans. Apart from that,
there were 161 images that contained text regions.

For human detection, state-of-the-art scene annotation system
based on deep neural networks, YOLO, was utilized [29], where the
model was trained on ImageNet 1000-class competition dataset [31].
In this approach, a single convolutional network is run on the whole
image. �e network returns bounding boxes of objects detected
with a probabilistic con�dence. Finally, the system thresholds the
bounding boxes by their corresponding probabilities. �e method
employed was successful to return human positions for 226 out of
228 images. �e recall of this method on our dataset was 0.99 in
terms of detecting humans. For text detection, another deep learn-
ing based method, named ‘connectionist text proposal method’
proposed in [34] was employed. �is approach detects text line by
densely sliding a small window (3x3) in the convolutional feature
maps and produces �ne-scale text proposals. Fine-scale text propos-
als are susceptible to false detection for windows, bricks, etc. �e
sequential structure of text is exploited via �nal recurrent neural
network to improve performance. �e recall rate of text detection
on our dataset was 0.89 . �e detection boxes are eliminated by
considering the aspect ratio, as really thin text or humans/human
parts are normally not recognized by people.
Eye Leading Lines. As aforementioned, one of the elements that
are used to strike compositional balance is eye leading lines (Fig. 6).
�e concept of eye leading lines in visual art or photography is re-
lated to the perspective, which is mainly associated with prominent
geometrical structures called parallel lines [37]. On photograph
plane, parallel lines appear to converge towards a point, which is
called the vanishing point (VP). �ere may be more than one VPs
in a scene, but the main interest is on the dominant one. In our
approach, we leverage dominant vanishing point detection method



proposed in [37] to account for eye leading lines information, which
can be seen as a high-level feature.

In our approach, straight edges are extracted from ultrametric
contour maps by subdividing the contour into straight line seg-
ments at points that have maximum distance to the straight line
connecting the end points of the contour. �en these straight edges
are grouped according to J-Linkage ��ing. Two random edges
(Ej1,Ej2) are sampled from the edge set. Lines are ��ed to each
edge, their hypothetical intersection pointvj is obtained. J-Linkage
creates a preference matrix according to a consistency measure.
Consistency measure was de�ned as the root mean square of dis-
tance between edge points and a line, l̂ that passes through the
hypothetical vj and minimizes this distance. Once the preference
set for each edge is acquired, edges that have similar preference
sets are clustered together. vj of the biggest cluster becomes the
dominant VP.

Figure 6: Eye leading lines are utilized to strike a balanced
composition [17].

4.3 Representation

Figure 7: Representation of di�erent features. Gaussians are
�tted within the boxes obtained and CoM of this image is
calculated. From top le� to bottom right: YOLO human de-
tection, text detection, dominant VP detection, and the cor-
responding Gaussian envelopes.

Current literature in psychology and computer science borrows
the physical concept of center-of-mass (CoM) given in Eq. (2). In
this case, the visual weight elements are modeled as point-masses.
CoM coordinates give an idea about into which quadrant of the
image the visual weight falls.

CoM =
1
M

∑
mx ∈X

mx × ®r , (2)

where mx is a point mass in set X , M is total mass, and ®r is the
position vector ofmx . As saliency maps were in grayscale, it was
relatively easy to compute CoM. However, there was a question
of how to calculate CoM for human-text, and vanishing point de-
tection. In [11], visual a�ention on a region is enveloped with a
Gaussian distribution, as the most a�ention is paid to the center
and it degrades further from the center. We adopt this concept and
�t a Gaussian within human, text detection boxes and around the
vanishing point detected (Fig. 7). Very thin boxes with high aspect
ratio were eliminated. �e upper le� corner coordinates, width and
height of each box in the image is taken and a Gaussian is �t inside
the box for the remaining boxes (Eq. (3) and (4)). �e spread of
the Gaussian becomes a parameter to be tuned according to each
box. �e value σ is adjusted according to the diagonal length of the
rectangle. �e Gaussian that is ��ed to i-th box bi is

σ =
√

height2bi +width2
bi
, (3)

G =
1

σ
√

2π
exp

{
−
(x − xCoM )2 + (y − yCoM )2

2σ 2

}
. (4)

Another concept that can be borrowed from physics is representing
forces as vectors. �e coordinates of CoM can be transformed to a
force vector. �e vectors computed from CoM of di�erent image
information channels can represent visual forces caused by di�erent
visual sources, which models the push and pull. �e coordinates
of CoM is converted into a vector where the origin is the center
of the image. Our approach is to combine CoM vectors through a
vectorial sum. �e values of vectors are standardized between 0
and 100.

5 EVALUATION
A�er representing each visual weight component in a vectorial
force structure, evaluation of how well these forces predict visual
center of an image in relation to visual balance follows. �is section
describes the evaluation setup and provides the results.
Setup. In line with the competing visual forces mentioned in [2],
we obtained the CoM vectors for saliency, human, text and VP
detection. However, the way these visual forces interact were un-
known to us. As �rst criteria for performance, we inspected the
absolute value of the di�erence between participant visual center
values and CoM calculated for di�erent features, |centerparticipant−
centerfeature | . A sorted version of these di�erences were evalu-
ated and checked whether the feature in question causes a drop in
di�erence measure. It was observed that a simple vectorial sum
failed to capture the actual resultant vector as the contribution of
each element was not known with certainty.

�e problem can be addressed through a linear regression system
as explained in the following. �e performance measure utilized
for prediction is mean square error in a cross validation se�ing.

Contribution of each feature can be explored through a linear
model that combines the forces. �e problem can be considered as
a regression problem where the dependent variable is the location
of visual center and predictors are vectors for the visual forces at
play. In order to show the e�ect of each element for prediction, we
devised a hierarchical regression method that started with a base
model which only had saliency information and adds each other



feature gradually:

(Model 1) visual center =β0 + β1 · CoMSaliency ,

(Model 2) visual center =β0 + β1 · CoMSaliency + β2 · CoMHuman,

(Model 3) visual center =β0 + β1 · CoMSaliency + β2 · CoMHuman
+ β3 · CoMText ,

(Model 4) visual center =β0 + β1 · CoMSaliency + β2 · CoMHuman
+ β3 · CoMText + β4 · CoMVP .

�e hierarchical analysis showed that addition of human and VP de-
tection information demonstrated statistically signi�cant (p < 0.05)
improvements to the base model while text detection information
had no signi�cant e�ect. �e models were also tested with 3-fold
cross validation and performance of models were measured through
mean square error (MSE) for each model. �e results are shown in
Fig. 8.
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Figure 8: MSE values of model 1, model 2, model 3, and
model 4 for selected saliency algorithms. Each line cor-
responds to a saliency algorithm chosen to represent cate-
gories given in Table 1.

Results. �e analyses showed that saliency was useful for rep-
resentation of compositional balance, but was not enough. Fur-
ther analysis demonstrates that there is room for improvement.
In light of empirical art studies, high-level features that may en-
hance saliency map performance were explored. �e MSE analysis
showed that the addition of human information contributed to
the representation power as seen in �rst two images in the �rst
row of Fig. 9. �is contribution can be based on two observations.
First, the undetected humans by saliency maps are sensed through
including human detection information. Second, consolidating in-
formation regarding human positions helps suppress noisy saliency
components.

�ird to ��h images in the �rst row of Fig. 9 portray why the
dominant VP detection information helped boosting prediction
performance. Saliency maps fails to account for the e�ect of par-
allel long lines leading the eye toward one side of the picture, i.e.
ceiling lines, station �oor, or the building edges for the last image.

�e saliency values pick upon the components that make up par-
allel lines, which is mainly what bo�om-up models are designed
to achieve, but it fails to capture their in�uence on balance. By
including this information, there is improvement in the prediction
performance.

On the other hand, including the text detection information did
not provide any improvement to the base model. When the cases
that include text are considered, this situation can be interpreted
in two ways. In the �rst case, the text information was not as
important as we had expected, so saliency methods failing to detect
text area did not negatively a�ect the performance. �e other case
may be that the contrast di�erence around the text area and high-
frequency texture of text was already captured via the bo�om-up
saliency method and adding text location did not do anything more
than stating the obvious.

Some cases where our model did not improve prediction based
solely on saliency or aggravated it are also shown in Fig. 9 (lower
row). Basically these are the cases where there are no dominant
human, or vanishing point components. �e tra�c lights in the
�rst image in that row is the main object in the image which is cap-
tured by saliency. As there is no other components that our model
includes, it predicts average response based solely on saliency infor-
mation, which makes it worse. In the second image, the outline of
the frog is captured by the saliency which is in line with participant
ratings. Average response from our model makes it worse as the
saliency CoM is multiplied with a coe�cient. �e third and fourth
images have objects of di�erent colors, i.e. red tree and walls of
di�erent colors. �e saliency map can capture the tree based on
color edges, while the model exacerbated the prediction due to
regression coe�cients. �e contrast component, the �re, of the last
image gets more a�ention than the humans walking away from
the car, which is not sensed by our model.

6 DISCUSSION
�e study suggests that there are high-level visual elements that
are in�uential in compositional balance but are not captured by
bo�om-up saliency maps. Accounting for these elements decreased
the error compared to visual center prediction employing only
saliency maps. Inspection of the failure cases shows that there is
room for further improvement. More compositional components
for further consideration are explored during our study. �ese
components can be color and contrast. As seen in the lower row of
Fig. 9, the color of the tree and the color of walls create di�erent
visual weights. Saliency captures the visual center correctly as it
senses the edge structures of the tree and the windows. However,
the color information is not encoded. One further step could be
accounting for di�erent visual weight of di�erent color areas [24].
�e last image in the row suggests objects of contrast may have
di�erent visual weight.

In [16], saliency maps were learned from actual gaze maps, and it
was concluded that humans, body parts, animals and text get more
a�ention in an image. As a top-down approach was adopted in
this study, the contribution of each visual element was not studied.
With our study, we a�empted to analyze each element.

�e hierarchical linear regression utilized in our study may have
done a good job in testing for contribution of added high-level



Figure 9: Evaluation on visual center prediction. �e yellow triangle shows mean visual center position annotated by partici-
pants. �e green triangle is the CoM of saliency images. �e red triangle is the prediction of the proposed model. �e top row
demonstrates cases where our model improved prediction along with the saliency maps (context aware saliency). �e lower
row displays cases where the model was worse than saliency or didn’t improve prediction.

features. One aspect that may not be captured via simple linear
regressions is interaction between these features. Furthermore,
they may also fail to detect nonlinear relationship between the
features and visual center locations given by participants. More
complex learning schemes can be employed.

Another aspect of the study that can be improved is the size
of the image data. �e number of images can be considered large
compared to empirical art studies, but it can be larger to be more
comprehensive. As there are no previous dataset regarding this
problem, the pictures had to be selected carefully to certainly show
the balance characteristics. �is process required inspection of
pictures manually, which constrained the number of images sub-
stantially. Another point about dataset collection is the online
survey. As the study was conducted with a group of graduate stu-
dents in a controlled lab environment, we deemed detection of
uninformative annotators unnecessary. If a much larger partici-
pant base is to be used, elimination of uninformative annotators
needs be incorporated. In our study, the participants were from
a small pool of graduate students whose demographics were not
recorded. For next stage of the visual balance research, the in�u-
ence of demographics can be further explored. In terms of di�erent
balance characteristics, next step is the association of visual center
to dynamic balance and imbalance.

For future, the implementation of other contributing high-level
features and analysis of their e�ect on prediction performance may
be helpful to pinpoint visual elements in the composition that can be

used to strike a balanced structure. As the visual center prediction
improves, the seam carving, image thumb-nailing, and retargeting
applications may perform be�er.

7 CONCLUSIONS
We investigated the relationship between compositional balance
and saliency concept through saliency maps’ predictive power for
visual center. In order to achieve this, we compiled a dataset of
images that are rated by participants through an online survey.
Di�erent bo�om-up saliency methods were run on these images.
Center of mass of saliency maps were directly utilized to predict
visual center. On top of saliency information, we included human,
text and vanishing point detection information based on theories
in empirical art studies. �e analyses demonstrated the addition of
human and vanishing point detection on top of saliency improved
prediction of the location of visual center of images.
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