
Smart Library: Identifying Books on Library Shelves using
Supervised Deep Learning for Scene Text Reading

Xiao Yang, Dafang He, Wenyi Huang, Alexander Ororbia
Zihan Zhou, Daniel Kifer, C. Lee Giles

The Pennsylvania State University, University Park, PA 16802, USA
{xuy111, duh188}@psu.edu, harrywy@gmail.com, {ago109,zzhou}@ist.psu.edu,

dkifer@cse.psu.edu, giles@ist.psu.edu

ABSTRACT
Physical library collections are valuable and long standing
resources for knowledge and learning. However, managing
and finding books or other volumes on a large collection of
bookshelves often leads to tedious manual work, especially for
large collections where books or others might be missing or
misplaced. Recently, deep neural-based models have been suc-
cessful in detecting and recognizing text in images taken from
natural scenes. Based on this, we investigate deep learning for
facilitating book management. This task introduces further
challenges including image distortion and varied lighting con-
ditions. We present a library inventory building and retrieval
system based on scene text reading. We specifically design our
text recognition model using rich supervision to accelerate
training and achieve state-of-the-art performance on several
benchmark datasets. Our proposed system has the potential
to greatly reduce the amount of manual labor required for
managing book inventories.

1 INTRODUCTION
Despite the increasing availability of digital books, many still
favor reading physical books and not all books or volumes
have been digitized. The large libraries that house them re-
quire great amounts of time and labor to manage inventories
that number in the millions. Manually searching bookshelves
is time-consuming and can be unfruitful depending on how
vague the search is. To solve this problem, we propose a deep
neural network-based system to automatically localize, recog-
nize and index text on bookshelves images.

We first process bookshelves images to localize and recog-
nize book spine text so as to build a digital book inventory.
Then, we utilize this digital inventory to help users quickly
locate a book or volume they are looking for. Our pipeline is
summarized in Figure 1.

Our contributions are as follows: 1) we build a scene text
reading system specifically designed for book spine reading
and library inventory management. We demonstrate that the

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
JCDL’17, Toronto, Ontario, Canada
© 2017 ACM. . . . $15.00
DOI:

Figure 1: System pipeline. (a)-(f) correspond to building a
book inventory while (A)-(D) correspond to locating a book
in a library. (a) Original image. (b) Rotated image based on
estimation of dominant orientation. (c) Saliency image. (d)
Segmented book spines. (e) Detected lines of words. (f) De-
tected words. (A) Query keywords. (B) Corresponding ISBN
number. (C) Location of the stack the book belongs to. (D)
Location of the book in the shelf.

book spine text information extracted by our system alone can
achieve good retrieval performance. This is essential, since
other types of data, like digital images of all book covers in a
collection, are not necessarily available to all users. 2) For text
recognition, we adopt a deep sequential labeling model based
on convolutional neural nets (CNN) and recurrent neural nets
(RNN). We propose using a per-timestep classification loss in
tandem with a weighted Connectionist Temporal Classifica-
tion (CTC) loss function [3] in order to accelerate training and
improve performance.

2 RELATED WORK
Previous work on book inventory management has typically
focused on book spine detection and retrieval such as the
framework in [13] using high-frequency filtering and thresh-
olding. A Hough Transform based book boundary detector [2]
was designed to extract features to retrieve books in an in-
ventory. Nevetha et. al. [12] used a line segment detector with
several heuristic rules to extract book spines with Optical Char-
acter Recognition (OCR) then applied to read text. A quantized
color histogram of a book spine image [11] was used as fea-
tures to search bookshelves. A hybrid method [17] combined
a text-reading method with an image-matching one.

It is important to note that the performance of most existing
approaches is limited by book spine segmentation and off-the-
shelf OCR systems. Handcrafted features based book spine
segmentation suffers from image distortion and low contrast

Figure 2: Architecture of the proposed framework where the
CNN architecture is similar to VGG16 [15].

between books. Off-the-shelf OCR systems, such as Tesser-
act [16], perform poorly on images taken in natural scenes.
Recently, scene text reading has become popular in computer
vision [6, 9, 14]. Here, we present a deep neural network based
system that reads scene text and show that scene text reading
can be effectively utilized for the purpose of book inventories
management and book retrieval. Combined with other image
processing techniques such as Hough Transform, our system
achieves robust performance on book retrieval task.

3 TEXT LOCALIZATION
We describe our method for detecting text in images of library
bookshelves. We first segment each book spine image and then
localize text on these images.

Book spine segmentation is a critical component of our sys-
tem since every book is expected to be indexed and queried
independently. Most existing methods rely exclusively on low-
level methods, such as the Hough Transform, for segmen-
tation. In contract, we only use the Hough Transform as a
pre-processing step for extraction of the dominant direction
of book spines, which is later used to rotate the entire image
(Figure 1(b)).

After rotating the image, we apply a text/non-text CNN
model to the input image in a sliding window manner to gen-
erate saliency maps (Figure 1(c)). The saliency maps can be
further used to: 1) detect book title locations, and 2) segment
each book. We adopt a non-max suppression method to find
the segmenting point for each book along horizontal direction.
As such, we circumvent the use of a Hough Transform or other
low-level routines, which are sensitive to lighting conditions
and low contrast.

A scene text localization algorithm based on a CNN is sub-
sequently applied to each book spine image. This step further
detects individual words on book spines. We refer the reader
to[5] for details.

4 TEXT RECOGNITION
In our system, book spine images are identified based on the
recognized text, which is then used for indexing and searching
from a book database.

4.1 Text Recognition via Sequence Labeling
For text recognition, a conventional approach is to first segment
and recognize each character, then predict a word based on a
language model or a combination of heuristic rules. However,
these approaches are highly sensitive to various distortions
in images causing character-level segmentation imperfections.

To bypass the character segmentation step, we cast text recog-
nition as a sequential labeling task, recognizing a sequence of
characters simultaneously.

Similar to [6, 14], our model consists of a CNN and a RNN
as shown in Figure 2. We first learn a sequence of deep CNN
features F = { f1, f2, · · · , fT} from an image I. To further ex-
ploit the interdependence among features, a bidirectional Long
Short-Term Memory (B-LSTM) [7] is applied on top of the
learned sequential CNN features, yielding another sequence
X = {x1, x2, · · · , xT} as final outputs. Each xi is normalized
through a softmax function and can be interpreted as the emis-
sion of a character or a blank label at a specific time-step. On
the other hand, the target word Y can also be viewed as a se-
quence (of characters): Y = {y1, y2, · · · , yL}. Since sequences
X and Y have different lengths, we adopt CTC loss [3] to al-
low an RNN to be trained. Stochastic gradient descent (SGD)
method is used for optimization. The gradient of the CTC loss
can be efficiently computed using a forward-backward dy-
namic programming method [4]. Decoding (finding the most
likely Y from the output sequence X) can be done by beam
search.

4.2 CTC Training with Per-Timestep
Supervision

During the CTC training process, blank labels typically dom-
inant the output sequence. Non-blank labels only appear as
isolated peaks (see Figure 3). This is a consequence of the
forward-backward algorithm [3]. Since we add a blank label
between each character, there are more possible paths going
through a blank label at a given timestep in the CTC forward-
backward graph. In the early stage of CTC training where
model weights are randomly initialized, all paths have similar
probabilities. As a result, the probability of a given timestep
being a blank label is much higher than any other kinds of
labels when summing up all valid paths in CTC graph.

Owing to the blank label issue described above, it generally
takes many iterations before a non-blank label appears in the
output sequence during training. To accelerate training, we
introduce per-timestep supervision. If character-level bound-
ing boxes are available, we can decide the label of xi at each
timestep i, based on its receptive field. In our experiments, xi
is assigned a label zi = yj if its receptive field overlaps with
more than half of the area of character yj, otherwise zi =blank
label. The objective function becomes:

L1(X) = CTC(X) + λLpt(X) (1)

Lpt(X) =
1
T

T
i=1
−logP(zi|xi) (2)

where λ is a hyper-parameter meant to balance the two terms.
Since our per-timestep supervision only provides one possible
kind of alignment, we decrease λ throughout training. At the
start λ is set such that the gradients yielded by the two kinds
of losses have the same magnitude.

Figure 3: (a) An example word image. (b) Character-level
bounding boxes. (c) A typical output sequence from a CTC-
trained model where blank labels (gray area) dominant. (d)
A per-timestep groundtruth generated based on (b).

4.3 CTC Training with a Decoding Penalty
Another issue of CTC training is the gap between the objec-
tive function and the evaluation criterion. CTC loss will try to
maximizes the log probability of outputting completely correct
labels Y = {y1, y2, · · · , yL}. In another words, incorrect pre-
dictions are treated as equally bad. However, this is not always
the way model performance is assessed. For example, for text
recognition edit distance is often reported. Graves et. al. [4]
proposed a sample-based methods to calculate the expected
loss. However, this sampling step significantly slowed down
training.

As such, we propose a simpler solution to penalize bad
predictions. A weighted CTC is introduced:

WCTC(x) = −logP(Y|X) · Le(Y, YD) (3)
L2(x) = WCTC(x) + λLpt(X) (4)

where Le(·, ·) is a real-value loss function (e.g. edit distance
between two strings) and YD is the decoded prediction using
beam search.

5 EXPERIMENTS
5.1 Text Recognition
To assess the performance of our text recognition, we report re-
sults on three widely-used benchmark datasets: IC03, SVT and
III5K using a standard evaluation protocol [18]. Each image
is associated with a lexicon containing 50 or 1,000 candidate
words for the purpose of refining model predictions.

We refer to our base model, trained using the CTC loss,
as Deep Sequential Labeling (DSL-base), where the models
trained using L1(x) and L2(x) losses will be referred to respec-
tively as DSL-L1 and DSL-L2.

Figure 4 shows the loss curves during training. As we can
see, adding per-timestep classification loss would significantly
speedup training at early stage. At later stage, as λ becomes
smaller and smaller, the difference between with and with-
out Lpt becomes marginal. However, from test set we can still
observe performance gain when using Lpt.

Table 1 shows text recognition results. We can see that the
OCR engine Tesseract performs poorly on all datasets. Our
recognition models outperform methods with handcrafted-
features [10, 20] and several deep neural-based methods fo-
cusing individual characters [9, 19], indicating the benefits
of learning sequential information. [8] achieves the best re-
sults on IC03-50. However, since they treat text recognition
as a multi-class (number of classes equals number of words)
classification task, it is impossible for their model to adapt to

Figure 4: CTC loss during training using different objective
functions. Dotted curves are the training loss while solid
curves are the validation loss. Best viewed in color.
Table 1: Cropped word recognition accuracy across several
benchmark datasets.

Method Recognition Accuracy(%)
IC03-
50

SVT-
50

III5K-
50

III5K-
1k

Tesseract [16] 60.1 65.9 - -
Lee 2014 [10] 88.0 80.0 - -
Yao 2014 [20] 88.5 75.9 80.2 69.3
Wang 2012 [19] 90.0 0.0 - -
Jaderberg 2014 [9] 96.2 86.1 - -
Jaderberg 2014b [8] 98.7 95.4 97.1 92.7
Shi 2016 [14] 98.7 96.4 97.6 94.4
Our DSL-base 96.1 94.5 97.7 95.1
Our DSL-L1 96.6 94.5 98.3 95.9
Our DSL-L2 98.2 94.6 98.5 96.0

out-of-dictionary text. [14] achieves better results on IC03-50
and SVT-50 than our DSL-base, despite that they share similar
model architecture and training procedure. We attribute this
to the fact that we use a much smaller training set. Both [8]
and [14] use 8 million synthetic images for training while we
only use 0.7 million. Yet we achieve the best results on III5K
dataset, which contains more testing images (3003) than IC03
(865) and SVT (647).

Both DSL-L1 and DSL-L2 perform better than DSL-base. We
hypothesize that adding per-timestep loss reduce peak pre-
diction phenomenon, which would confuse the model about
where to yield non-blank predictions. DSL-L2 ties or slightly
outperforms DSL-L1 on all datasets, suggesting that our re-
vised loss WCTC(X) is effective.

5.2 Book Spine Retrieval
To assess the retrieval performance, we adopt the retrieval-
based evaluation method similar to that of [2] and [17]. How-
ever, since we only have access to the 454 book spine images
they used for querying instead of the entire database to search
from which contains 2,300 books, it is necessary to build our
own collection. Therefore we crawled and sampled 9,100 books
that are from the same library and in similar areas to those
454 books. For each book, we crawled and indexed its title and
meta-data such as the author and publisher. We expect that the
our collection is a superset of theirs, which would mean that
higher precision and recall from our results suggest superior
performance.

We first obtain book spine images using the approach de-
scribed above. For each book spine image, text is detected and

Figure 5: Recall at top-k during retrieval by querying recog-
nized titles and groundtruth titles, respectively.

recognized. The outputs are further refined by matching to a
dictionary from our database using nearest neighbor matching.
Finally, we use these outputs as keywords to search from our
database. During search, tf-idf (term frequency-inverse docu-
ment frequency) weights are used to rank returned results. We
built our search engine with Apache/Solr [1] which means it
can easily scale to a large collection of books and volumes.

As in [2] and [17], we report the precision and recall when
querying the 454 spine images. We further report recall at top-
k, which measures the number of correctly identified books
to appear in top-k results of a search. All these measures are
widely used by the information retrieval community.

Table 2 shows our results compared with [17]. Numbers are
extracted from their paper’s precision/recall curve that yield
best F-score. Using only textual information, we achieve the
best recall and a much higher (0.91 VS 0.72) F-score. Given that
our database is much larger than theirs (9,100 VS 2,300), the
results show the better performance of our proposed method.
[17] achieved 0.97, 0.86 and 0.91 for precision, recall and F-
score respectively in their hybrid model. However, their hybrid
model uses both text and image as queries, which requires
much more processing time. Moreover, for all libraries one
cannot always assume that book images are already available.

Figure 5 shows recall at different top-k rank. Our model
achieves 96.4% recall within the top 5 search results. Further
investigation of the failure cases found that a large portion of
wrong predictions were due to the fact that multiple books
may have similar or even identical titles. As such even us-
ing groundtruth titles as keywords in search cannot guaran-
tee 100% recall at top-1 rank position. The results can be fur-
ther improved by detecting and recognizing additional meta-
information on the book spine such as publisher or author. Al-
though image-based search might address this issue, it comes
with the cost of storing and matching images. The rest of the
failure cases are largely due to incorrect text localization.

6 CONCLUSION
We propose a scene text detection and recognition system for
identifying books in a bookshelf library and building a digital
library inventory. We achieve state-of-the-art performance for
scene text recognition and at the same time reduce training
time. Information retrieval experiments were conducted on a
large physical library database. Performance on the whole sys-
tem demonstrates that text-based retrieval is competitive with
image-matching retrieval, and that text-based retrieval reduces
the need for storing or matching book spine images. Finally,

Table 2: Precision and recall compared with another
method, using only text as queries.

Precision Recall F-score
Tsai2011 (Text) 0.92 0.60 0.72
Ours 0.92 0.90 0.91

we speculate that this method could help to find the location
of books on the bookshelves of scholars and researchers.

ACKNOWLEDGMENTS
We gratefully acknowledge partial support from NSF grant
CCF 1317560 and a hardware grant from NVIDIA.

REFERENCES
[1] Apache Solr. (????). http://lucene.apache.org/solr/.
[2] David M Chen, Sam S Tsai, Bernd Girod, Cheng-Hsin Hsu, Kyu-Han Kim,

and Jatinder Pal Singh. 2010. Building book inventories using smartphones.
In Proceedings of the 18th ACM international conference on Multimedia. ACM.

[3] Alex Graves, Santiago Fernández, Faustino J Gomez, and Jürgen Schmid-
huber. 2006. Connectionist temporal classification: labelling unsegmented
sequence data with recurrent neural networks. In Proceedings of the 23th
International Conference on Machine Learning (ICML-06). 369–376.

[4] Alex Graves and Navdeep Jaitly. 2014. Towards End-To-End Speech Recog-
nition with Recurrent Neural Networks. In Proceedings of the 31st Interna-
tional Conference on Machine Learning (ICML-14). 1764–1772.

[5] Dafang He, Xiao Yang, Zihan Zhou, Daneil Kifer, and Lee C Giles. 2016.
Aggregating Local Context for Accurate Scene Text Detection. In Asian
Conference on Computer Vision. Springer, 91–105.

[6] Pan He, Weilin Huang, Yu Qiao, Chen Change Loy, and Xiaoou Tang. 2016.
Reading scene text in deep convolutional sequences. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence. AAAI Press, 3501–3508.

[7] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory.
Neural computation 9, 8 (1997), 1735–1780.

[8] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
2014. Synthetic data and artificial neural networks for natural scene text
recognition. arXiv preprint arXiv:1406.2227 (2014).

[9] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Deep
features for text spotting. In European conference on computer vision. Springer.

[10] Chen-Yu Lee, Anurag Bhardwaj, Wei Di, Vignesh Jagadeesh, and Robinson
Piramuthu. 2014. Region-based discriminative feature pooling for scene
text recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 4050–4057.

[11] DJ Lee, Yuchou Chang, JK Archibald, and C Pitzak. Matching book-spine
images for library shelf-reading process automation. In 2008 IEEE Interna-
tional Conference on Automation Science and Engineering.

[12] MP Nevetha and A Baskar. 2015. Automatic book spine extraction and
recognition for library inventory management. In Proceedings of the Third
International Symposium on Women in Computing and Informatics. ACM.

[13] Nguyen-Huu Quoc and Won-Ho Choi. 2009. A framework for recognition
books on bookshelves. In International Conference on Intelligent Computing.
Springer.

[14] Baoguang Shi, Xiang Bai, and Cong Yao. 2016. An end-to-end trainable
neural network for image-based sequence recognition and its application
to scene text recognition. IEEE Transactions on PAMI (2016).

[15] K. Simonyan and A. Zisserman. 2014. Very Deep Convolutional Networks
for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).

[16] Ray Smith. 2007. An overview of the Tesseract OCR engine. In Document
Analysis and Recognition, 2007. ICDAR 2007. Ninth International Conference
on, Vol. 2. IEEE, 629–633.

[17] Sam S Tsai, David Chen, Huizhong Chen, Cheng-Hsin Hsu, Kyu-Han
Kim, Jatinder P Singh, and Bernd Girod. 2011. Combining image and text
features: a hybrid approach to mobile book spine recognition. In Proceedings
of the 19th ACM international conference on Multimedia. ACM, 1029–1032.

[18] Kai Wang, Boris Babenko, and Serge Belongie. 2011. End-to-end scene text
recognition. In Proceedings of the 2011 International Conference on Computer
Vision. IEEE Computer Society, 1457–1464.

[19] Tao Wang, David J Wu, Andrew Coates, and Andrew Y Ng. 2012. End-
to-end text recognition with convolutional neural networks. In Pattern
Recognition (ICPR), 2012 21st International Conference on. IEEE, 3304–3308.

[20] Cong Yao, Xiang Bai, Baoguang Shi, and Wenyu Liu. 2014. Strokelets: A
learned multi-scale representation for scene text recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 4042–4049.

http://lucene.apache.org/solr/

	Abstract
	1 Introduction
	2 Related Work
	3 Text Localization
	4 Text Recognition
	4.1 Text Recognition via Sequence Labeling
	4.2 CTC Training with Per-Timestep Supervision
	4.3 CTC Training with a Decoding Penalty

	5 Experiments
	5.1 Text Recognition
	5.2 Book Spine Retrieval

	6 Conclusion
	References

