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Abstract

The availability of commodity multi-camera system-
s such as Google Jump, Jaunt, and Lytro Immerge have
brought new demand for reliable and efficient extrinsic
camera calibration. State-of-the-art solutions generally re-
quire that adjacent, if not all, cameras observe a com-
mon area or employ known scene structures. In this pa-
per, we present a novel multi-camera calibration technique
that eliminates such requirements. Our approach extend-
s the single-pair hand-eye calibration used in robotics to
multi-camera systems. Specifically, we make use of (pos-
sibly unknown) planar structures in the scene and com-
bine plane-based structure from motion, camera pose es-
timation, and task-specific bundle adjustment for extrinsic
calibration. Experiments on several multi-camera setups
demonstrate that our scheme is highly accurate, robust, and
efficient.

1. Introduction

With their tremendous applications in virtual reality, 3D
mapping and robotic vision, multi-camera systems ranging
from Point Grey’s Ladybug cameras to Jaunt’s 360 camer-
a rig have become increasingly prevalent in fields of com-
puter vision and robotics. Conducting precise and efficient
calibration of extrinsic parameters across all cameras with-
in such a system, that is, obtaining the relative poses of the
cameras, is central for all such applications.

Approaches in Computer Vision. One possible solution
is to ”force” cameras to observe a common object, if not
a common area. [13] proposed a technique where cameras
only need to observe some part of the calibration board. The
plane contains specially designed patterns amenable for fea-
ture extraction. Combined with planar geometric constrain-
t, they can reliably extract the extrinsic parameters between
pairs of cameras as long as they observe a part of the same

plane but will fail when the cameras are positioned nearly
back-to-back.

Other calibration tricks have also been proposed. [11]
utilizes mirrors to create virtual views of the calibration
board. Such a method is flexible for pairwise camera cal-
ibration but requires elaborate configuration and design.
Further, when the number of cameras increases (e.g., a ring
of cameras), it would require combinations of mirrors and
the complexity of geometric model grows quickly. [5] pack-
s the cameras close to each other and assumes same optical
center to handle the most extreme case where no camera
pairs have an overlapping FoV. Such a configuration elim-
inates translation from the extrinsics and therefore the re-
sulting system cannot capture parallax.

It is also possible to exploit scene geometry for calibra-
tion, e.g., by matching 3D maps created by different cam-
eras [4] and matching image features to a 3D map created
by an external SLAM system [3]. As a simpler alternative,
[10] makes use of the ground plane as common scene ge-
ometry and strategically position the camera so that they
can uniformly see the ground. It is also worth noting that
most of these previous approaches conduct pair-wise cal-
ibration, which undermines the accuracy of the estimated
translations.

Approaches in Robotics. The robotics community has
focused mainly on the hand-eye calibration problem where
a camera (”eye”) is mounted on the gripper (”hand”) of a
robot. The camera was calibrated using a calibration pat-
tern. Then the unknown transformation from the robot co-
ordinate system to the calibration pattern coordinate sys-
tem as well as the transformation from the camera to the
hand coordinate system need to be estimated simultaneous-
ly [1, 9, 8].

Most previous approaches exploit motion rigidity and
3D scene geometry. Since the ”hand” cannot capture im-
ages, the problem hence resembles calibrating two non-
overlapping cameras. [6] acquires camera trajectories
through structure-from-motion (SfM), and as long as the



motion is non-planar, it can reliably extract the extrinsic
parameters through optimization. [12] further extends [6]
to handle most planar and non-planar motion by iterative-
ly refining the trajectory, extrinsic parameters and the 3D
scene points. Yet, all these approaches are applicable to
two-camera systems whereas we focus on a more general
configuration.

Contributions of this Paper. We present a novel hand-
eye calibration technique for calibrating multi-camera sys-
tems with non-overlapping FoVs. Unlike previous methods,
we do not assume the scene to have specific patterns (e.g.,
checkerboards) or known structures (e.g., external 3D map-
s). Instead, we propose to explore the (possibly unknown)
planar surfaces in the scene for calibration. Our method can
be applied to any textured scene planes. In particular, in
this paper we utilize a calibration target composed of planar
facades of random patterns [13] as well as generic planar
surfaces in outdoor street views to demonstrate the general-
ity of our method.

We start with conducting a plane-based SfM (e.g., [17]).
Specifically, we extract feature points from the scene planes
by SURF [2] and only match the feature points that have
a unique portfolio in feature space. Next, we group the
matched feature points across multiple frames into a tra-
jectory. Note that, the planar constraint and trajectory for-
mulation provide a strong evidence to exclude the mis-
matches between similar feature points, which often occurs
when multiple similar calibration targets are used to cali-
brate multiple camera systems.

For motion estimation, we first detect and estimate the
homography matrix of a plane through a consensus algo-
rithm which preserves the best homography matrix estimat-
ed from the inlier trajectories. The relative camera poses
are then estimated by decomposing the homography matri-
ces. Finally, we conduct task-specific bundle adjustment to
refine the extrinsic parameters, camera motions and coordi-
nates of the feature points by minimizing the reprojection
error in each frame. We experiment our technique on sev-
eral multi-camera systems including a two-camera fisheye
panorama system, a 16-camera circular array, and a five-
camera system. Extensive experiments show that our solu-
tion outperforms the state-of-the-art techniques in accuracy,
robustness, and efficiency.

In summary, our main contributions are as follows:

• To the best of our knowledge, we are the first to ap-
ply plane-based SfM to extrinsic calibration of multi-
camera systems. Our method does not require any spe-
cific patterns or known scene structures, and obtains
accurate results even in the cases when existing meth-
ods fail (i.e., due to image noises, degenerate scene
configurations, or excessive manual interventions).

• To handle mismatches in the plane-based SfM, we pro-
pose a new method to detect outlying feature points
based on their accumulative reprojection error across
all frames. We further develop a novel task-specific
bundle adjustment procedure to jointly refine the rela-
tive poses of all cameras and update the sets of outliers.

• As planes are prevalent in man-made scenes, our al-
gorithm provides a viable solution to the calibration
problem in a wide variety of real scenarios. In this pa-
per, we conduct experiments on different multi-camera
systems to demonstrate its effectiveness and efficiency.

2. Extrinsic Calibration via Plane-based Struc-
ture from Motion

2.1. Problem Formulation

We consider calibrating the extrinsic parameters of
Nc ≥ 2 rigidly embedded cameras {C1, C2, . . . , CNc} with
known intrinsic parameters. Since the cameras are jointly
moving, there exists a constant homogeneous transforma-
tion between any two cameras. Specifically, if we choose
one of the cameras as the reference camera Cr, then the ho-
mogeneous transformations from Cr to another camera Ci

can be represented as[
Rir tir
0 1

]
∈ SE(3), (1)

where Rir ∈ SO(3) and tir ∈ R3 denote the rotation and
translation, respectively. We also use rir to denote the Ro-
drigues rotation vector of Rir in the experiment part. This is
illustrated in Fig. 1(a). The objective of extrinsic calibration
is therefore to estimate {Rir, tir}, 1 ≤ i ≤ Nc.

Our approach to extrinsic calibration is based on struc-
ture from motion (SfM), which operates by moving the
camera rig into N positions and observe the scene at each
viewpoint. Let Xk

j be the 3D coordinates of an object fea-
ture expressed in the coordinate system of camera Ci at the
k-th frame. These coordinates are related to the coordinates
of the same feature in the first frame, X1

j , as follows:

Xk
j = Rk

i X
1
j + tki , ∀1 ≤ k ≤ N, (2)

where {Rk
i , t

k
i } represents the motion of Ci at time k. Fur-

ther, it is possible to show with the rigid body constraint
between Cr and Ci that:

Rk
i Rir = RirR

k
r , (3)

Rk
i tir + sit

k
i = Rirt

k
r + tir, (4)

where si is a non-negative scalar that accounts for the scal-
ing ambiguity in the magnitude of the camera translations.
Therefore, if one can reliably estimate the motions of each
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(a) (b)
Figure 1. Overview of our method. (a) Basic configuration and notation of our system. (b) The pipeline of our calibration method.

camera {Rk
i , t

k
i }Nk=1, then the homogenous transformations

can be obtained by solving Eq. (3) and (4).
Fig. 1(b) provides an overview of our method. We use

the dimension of Cr as the canonic dimension of the entire
system. In occasions where the physical dimension of tir
is required (e.g., robotics), we can make the reference cam-
era observe some static scene with known metrics (e.g., a
checkerboard pattern); in occasions where the exact phys-
ical dimension of tir is not required (e.g., 3D reconstruc-
tion), then the metrics of the scene are not needed. We com-
pute the motion of the reference camera {Rk

r , t
k
r}Nk=1 using

Zhang’s method (for known metrics) [16] or a plane-based
SfM approach (for unknown metrics) [17].

For the other cameras, it is sufficient to observe any stat-
ic scene (with unknown parameters) in order to estimate
their rotations Rk

i and translations tki up to a scaling fac-
tor si. As shown in Fig. 1(b), the calibration process con-
sists of computing the motion of each camera via a plane-
based SfM approach, estimating the homogeneous trans-
formations {Rir, tir}Nc

i=1 by solving a linear least-squares
problem, and jointly refining all variables using a global
bundle adjustment.

2.2. Plane­based Motion Estimation

It is shown in [17] that both intrinsic and extrinsic pa-
rameters of a freely moving camera can be robustly and ef-
ficiently estimated by detecting and tracking one or more
dominant planes in the scene, which are commonly seen in
both indoor and outdoor manmade environments. For each
camera Ci in our system, in this section we describe a sim-
ple plane-based method to obtain its extrinsic parameters
{Rk

i , t
k
i }Nk=1. Then, we show how one can obtain the trans-

formations (Rir, tir) from the camera motions.

2.2.1 Preliminaries

Given a set of N images captured by Ci, we first detect and
match the feature points (i.e., SURF features) to form a set
of trajectories T = {Tj}Mj=1 of M feature points. Each
trajectory can be written as Tj = {xk

j }
qj
k=pj

, where pj and
qj (1 ≤ pj ≤ qj ≤ N) denote the starting and ending

frames of the trajectory, and xk
j ∈ P2 is the coordinates of

the feature point in the k-th frame. We use T ab ⊆ T to
represent the set of trajectories that span the a-th and b-th
frames.

In this paper, we represent a 3D plane π with respec-
t to the first camera coordinate frame using the equation
nTX = d, where n is the unit-length normal vector and
d > 0 denotes the distance from the plane to the origin of
the first camera frame. Without loss of generality, we write
ñ = n/d for simplicity. If a trajectory belongs to the 3D
plane π, its coordinates in the first frame and the k-th frame
are related by a planar homography xk

j = Hk
i x

1
j , where

Hk
i ≃ Ki(R

k
i + tki ñ

T )K−1
i , (5)

with the symbol ≃ meaning “equality up to a scale”.

2.2.2 Plane Detection and Tracking

To detect and track the dominant plane in the scene, we
employ a modified version of the TRASAC algorithm [17].
Like RANSAC, this algorithm consists of multiple trials of
the same procedure to select the best result. In each trial,
it first picks two consecutive frames (Fk−1, Fk) at random.
Then, it randomly choose four trajectories from T (k−1)k to
estimate the homography H

(k−1)k
i of a putative plane mod-

el. Subsequently, each trajectory Tj ∈ T (k−1)k is classified
into the class of inliers Tin, or the class of outliers Tout, by
comparing the projection error ||xk

j −H
(k−1)k
i xk−1

j || with
a threshold ϵ. Then, the algorithm proceeds by iteratively
choosing a new pair of frames adjacent to the previously
chosen frames, say (Fk, Fk+1) (or equally (Fk−2, Fk−1)),
computing H

k(k+1)
i from four randomly sampled trajecto-

ries from T k(k+1) ∩ Tin, and classifying each trajectory in
T k(k+1) into Tin and Tout, until the homographies have
been computed for all consecutively frames. We refer in-
terested readers to [17] for more details about the TRASAC
algorithm.

The original TRASAC algorithm assumes that if a trajec-
tory Tj is classified as an inlier according to its fitness be-
tween two adjacent frames, it remains an inlier in all frames



it spans. While this is typically true for video sequences, a
mismatch is likely to happen in other frames in our problem
where the baseline between two consecutive frames is large.
To exclude such kind of outliers, we post-process the output
of TRASAC by moving a trajectory Tj ∈ Tin into Tout if

qj∑
k=pj

∥∥∥xk
j −H

(k−1)k
i xk−1

j

∥∥∥2 > (pj − qj + 1)ϵ2. (6)

Finally, we compute the homography from the k-th
frame to the first frame as: Hk

i =
∏k−1

m=1 H
m(m+1)
i .

2.2.3 Estimation of the Extrinsic Parameters

Given the set of homographies {Hk
i }Nk=1 for each camera

Ci, we now discuss how to obtain the extrinsic parameters
of all cameras.

First, given the intrinsic parameters Ki, we can compute
(Rk

i , t
k
i , ñ) from Hk

i according to Eq. (5). It is well known
that there are at most four solutions for such a decomposi-
tion [14]. With the positive depth constraint, the number of
physically possible solutions can be reduced to two. Final-
ly, by taking images at three or more general viewpoints,
i.e., N ≥ 3, we are able to identify the unique solution.

Next, given the camera motions {Rk
r , t

k
r}Nk=1 and

{Rk
i , t

k
i }Nk=1 for i = 1, 2, ..., Nc, we can estimate the values

of extrinsic parameters {Rir, tir} for each pair (Cr, Ci) us-
ing Eq. (3) and (4). To estimate Rir, we note that Eq. (3) can
be re-written via the logarithm mapping on SO(3) as [15]:

rki = Rirr
k
r , (7)

where rki = logRk
i , r

k
r = logRk

r . To solve for Rir, we pro-
pose to minimize the Euclidean distance of the two vectors
in Eq. (7):

min

N∑
k=1

||rki −Rirr
k
r ||2,

s.t. RT
irRir = I.

(8)

The above problem has a closed-form solution

Rir = (AT
irAir)

− 1
2AT

ir, (9)

where Air =
∑N−1

k=1 rkr (r
k
i )

T .
To estimate tir, one can use the bisection method pro-

posed in [9] and solve a Second Order Cone Programming
feasibility problem. But such an algorithm is relatively time
consuming. Since our goal is just to obtain an initial esti-
mation of tir, we have found that it suffices to solve the
following least-squares problem from Eq. (4):

Birαir = βir (10)

with

Bir =


R2

i − I t2i 0 . . . 0
R3

i − I 0 t2i . . . 0
...

...
...

. . . 0
RN

i − I 0 0 . . . tNi

 ∈ R(3N−3)×(N+2),

(11)

αir =


tir
s2i
...
sNi

 ∈ RN+2, and βir =


Rirt

2
r

Rirt
3
r

...
Rirt

N
r

 ∈ R3N−3.

(12)
Note that instead of solving for a single si for all frames as
indicated in Eq. (4), we have found that using a different
scaling factor ski for each frame in Eq. (12) provides more
stable estimates in the presence of noises. Finally, we sim-
ply compute si =

1
N−1

∑N
k=2 s

k
i .

2.3. Plane­based Bundle Adjustment

The parameters obtained through the above procedure
are not globally optimal. For example, the homography
matrices {Hk

i }Nk=1 were estimated using matched feature
points between two adjacent frames, thus are not necessar-
ily consistent with the motion of a camera observing the
same plane across N frames. In this section, we describe
a plane-based bundle adjustment method which jointly re-
fines the extrinsic parameters of the reference camera, and
homogeneous transformations from all cameras to the ref-
erence camera, and the planar scene structure.

Let C = {Ci}Nc
i=1 denote the set of all cameras. To distin-

guish different cameras in our objective function, we aug-
ment the notations used in previous sections as follows: ñi

denotes the dominant plane seen by camera Ci, Tij is the
j-th trajectory observed by Ci, and (qij , pij) denote the s-
tarting and ending frames of Tij . Let xij represent the real
position (to be estimated) of the j-th feature point in the
first frame of Ci

1, we propose to minimize the following
geometric error function:

∑
i∈C

∑
Tij∈Tin

qij∑
k=pij

∥∥xk
ij −Ki(R

k
i + tki ñ

T
i )K

−1
i xij

∥∥2
+
∑
i∈C

∑
Tij∈Tout

(qij − pij + 1)ϵ2,

(13)

where

Rk
i = RirR

k
rR

T
ir, (14)

tki = Rirt
k
r + (I −RirR

k
rR

T
ir)tir. (15)

1Note that xij is different from x1
ij , the (possibly noisy) 2D measure-

ment of the same quantity.



(a) (b) (c) (d)
Figure 2. Our experiment settings. (a) The experiment on synthetic data uses a two-camera system {Cr, Ct} in which the camera poses
are randomly generated. For calibration, we generate random feature points on a 3D plane that lie inside a rectangle observable by Ct. (b)
A system consists of two fisheye cameras fixed in a back-to-back position. (c) Experimental setup of the 16-camera circular array. The
calibration targets form an octagon which includes a checkerboard (facing towards the reference camera) and seven random planar patterns
(facing towards the rest of the cameras). (d) Experimental setup of the five-camera system. We calibrate this system using street view
images.

Here, ϵ is the penalty for labeling a trajectory as an outli-
er. Note that in this formulation we compute Rk

i and tki
using the relative poses (RirR

k
rR

T
ir) and (Rirt

k
r + (I −

RirR
k
rR

T
ir)tir), respectively. Further, unlike the SfM sys-

tems for general 3D scenes, our plane-based bundle adjust-
ment relates points between two frames using a homogra-
phy. Therefore, it does not need to estimate the 3D coor-
dinates of the feature points. This makes our plane-based
method more robust in real world applications.

To minimize the above nonlinear objective function, we
adopt an alternating scheme which iterates between estimat-
ing the structure and motion parameters and updating the
trajectory labels:

• Given the classification of trajectories into {Tin, Tout},
we solve for {xij}Mi

j=1, Rir, tir, and ñi via the
Levenberg-Marquardt method.

• Given the structure and motion parameters, we update
the sets {Tin, Tout} by comparing the cost of labeling
a trajectory as an inlier and the cost of labeling the
trajectory as an outlier:

Tij ∈

{
Tin, if g(i, j) < h(i, j)

Tout, otherwise
(16)

with

g(i, j) =

qij∑
k=pij

∥∥xk
ij −Ki(R

k
i + tki ñ

T
i )K

−1
i xij

∥∥2 ,
h(i, j) = (qij − pij + 1)ϵ2.

3. Experiments
In this section, we systematically evaluate the perfor-

mance of our method on both synthetic and real datasets,
and compare it to the state-of-the-art methods. We first gen-
erate synthetic data to compare our method with two recent
hand-eye calibration methods on calibrating a two-camera

system where the cameras have non-overlapping FoVs, as
shown in Fig. 2(a). We then conduct experiments on three
real systems. The first system consists of a pair of Canon 5D
Mark III cameras, each with a fisheye lens, fixed in a back-
to-back position, as shown in Fig. 2(b). The second system
is a circular camera rig composed of 16 GoPro Hero4 cam-
eras, as shown in Fig. 2(c). We calibrate the extrinsic pa-
rameters of these two systems with some calibration targets.
The third system consists of five GoPro Hero4 cameras, as
shown in Fig. 2(d), and we calibrate its extrinsic parameters
with images of an unknown outdoor scene. The intrinsic pa-
rameters of individual cameras were calibrated prior to the
experiments using Zhang’s method [16] through the MAT-
LAB camera calibrator.

3.1. Experiments on Synthetic Data

For experiments on synthetic data, we compare our
method with two recent hand-eye calibration methods, one
based on Second Order Cone Programming (SOCP) [9] and
the second based on branch-and-bound [8]. We use a similar
experiment setting as used in the two aforementioned tech-
niques. We construct a two-camera rig {Cr, Ct} and set out
to estimate the relative pose of Cr to Ct. Same as [9] and
[8], we assume the motion of the reference camera Cr is
known. We assume Ct has a resolution of 1280 × 1024, a
focal length f = 500, its principle point at (640, 512). We
assume the camera does not have radial distortions.

Next we randomly generate the translation between
Cr and Ct as (rtr, ttr), where rtr is the rotation
vector of Rtr represented through the Rodrigues for-
mula. The configuration in Fig. 2(a) correspond-
s to rtr = [1.4520,−0.6607,−1.1607] and ttr =
[12.2560,−225.4166,−128.9851]. To test the robustness
of all methods, we generate 100 uniformly distributed fea-
ture points inside a rectangle lying at a distance of 700 in
front of Ct, as shown in Fig. 2(a). We assume that the first
frame of Ct is able to observe all these points.

Finally, we randomly generate another 9 viewpoints and
poses for Ct such that Ct looks approximately at the center
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(a) (b)
Figure 3. Comparison of calibration methods on synthetic data with different noise levels. (a) The mean error and standard deviation of the
estimated Rir . (b) The mean error and standard deviation of the estimated tir.

of the rectangle to observe the majority (but not all) feature
points, and we move Cr together with Ct. Feature points
are projected onto under the ground truth camera intrinsics
and those lying outside the view frustum are excluded.

We test the algorithms under 8 different noise levels
σ, where σ is the standard deviation of the additive white
Gaussian noise on the 2D coordinates of the projected 3D
feature points. To conduct the SOCP method [9], we need
to first apply SfM to estimate Ct’s motion: {Rk

t , t
k
t }Nk=1.

However, a conventional SfM system fails since we use a
plane as scene geometry. We instead resort to the plane-
based SfM method [17] before conducting SOCP. For the
branch-and-bound method [8], we directly use the source
code from the authors’ website.

Fig 3 compares our scheme with [9] and [8]. The stan-
dard deviation of the branch-and-bound method [8] can be
rather high under large noise, i.e., its robustness degrades
when the noise level is high (especially when estimating
tir). We suspect it is because, with high noise level, it may
have discarded the block containing the correct solution too
early. Our method, however, still gives accurate estimations
in such cases, which shows that L2-norm objective is easier
to converge to a better solution than L∞-norm under noise.

Our method also outperforms the SOCP-based
method [9]. A major problem there is that it opti-
mizes tir with a fixed and possibly inaccurate Rir. In
contrast, our method optimizes all parameters jointly via
bundle adjustment. Further, our method explicitly excludes
the outliers while estimating these parameters, making it
less sensitive to noises.

3.2. Experiments on Real Systems

In this section, we test our method on three different re-
al systems. In the first two experiments, we choose one of
the cameras as the reference camera and face it towards a
checkerboard with known scale. We detect the corners on
the checkerboard in the images using [7] and estimate the

Figure 4. Example images taken by the target fish-eye camera af-
ter radial distortion correction. The green dots and red dots corre-
spond to the inlier and outlier trajectories classified by our plane
detection and tracking algorithm, respectively. For better visual-
ization, the trajectories have been down-sampled by a factor of 3.

reference camera’s motion parameters {Rk
r , t

k
r}Nk=1 using

Zhang’s method [16]. These parameters are later jointly re-
fined with the extrinsic parameters of the other cameras ob-
tained by our plane-based method. In the last experiment,
we do not use any calibration target with known geometry.
Instead, we calibrate the 5-camera system using images of
a street scene to demonstrate the wide applicability of our
method. Unless explicitly stated otherwise, the parameter ϵ
is set to 4 by default.

3.2.1 Two-Camera System, With Calibration Targets

In this experiment, we calibrate two cameras fixed in a
back-to-back position (Fig. 2(b)). The cameras use Canon
EF 8-15 mm fisheye lens with focal length fixed at 8 m-
m. We let the reference camera Cr face the checkerboard,
and the target camera Ct face a random planar pattern [13].
We randomly move the camera system to take 13 pairs of



(a) (b)
Figure 5. Visualization of the results with calibration targets. (a) The relative positions of the 16 cameras estimated by our method. The
top camera is the reference camera. (b) An example rectification results for two of the cameras using the estimated extrinsic parameters.

synchronized images. To remove the radial distortions, we
use the Matlab camera calibrator with three-parameter ra-
dial distortion model. Fig. 4 shows some example images
taken by the target camera. We have observed that it is very
difficult to completely remove the radial distortion in the
images. As shown in Fig. 4, even after distortion correc-
tion, only the central areas of the images are rectified. The
areas near the boundary of the acquired images still exhibit
substantial distortion.

In Fig. 4 we also show the inlier and outlier trajectories
(i.e., matched feature points) obtained after the final refine-
ment. It clearly shows that that our plane-based method has
successfully detected the outliers caused by radial distor-
tion. These outliers thus have no impact on the calibration
results, demonstrating the robustness of our method.

The results obtained by our method are
rtr = [−0.0154,−3.1200, 0.0039], and ttr =
[11.1123,−0.3307,−298.1045]. Note that the esti-
mated rtr is very close to 180◦ and ttr is very close to
the actual distance between the lenses of the two cameras,
which is about 300 mm.

3.2.2 16-Camera Array, With Calibration Targets

In this experiment, we calibrate the extrinsic parameters of
16 GoPro Hero4 cameras mounted on a circular frame, as
shown in Fig. 2(b). The horizontal FoV of the cameras is
about 80◦. The radius of the circular frame is 235 mm; the
angle between neighboring cameras is 22.5◦.

We choose one of the cameras as the reference and face
it towards a checkerboard with known scale. We detect the
corners on the checkerboard using [7] and estimate the ref-
erence camera’s motion using Zhang’s method [16]. We
face the rest of the 15 cameras towards 7 random patterns
and randomly move the camera frame (via controls on the
tripod) to capture 40 sets of synchronized images. We dis-
card the sets in which [7] fails to detect the checkerboard
(e.g., due to poor illuminations) and use the remaining sets.

Fig. 5 shows the calibration results. To visually assess
the quality of calibration, we use our estimated extrinsic

parameters along with the cameras’ intrinsic parameters to
rectify neighboring pairs of images. Fig. 5(b) illustrates
some sample results. In particular, the image pairs exhibits
nearly pure-horizontal parallax, a sign of accurate extrinsic
calibration.

For further evaluations, we compare our results with the
MATLAB stereo camera calibrator [16]. When using [16],
we capture 60 pairs of images of a checkerboard to produce
highly accurate rectification between every pair of adjacent
cameras. The process takes about 3 hours, and it costed us
2 hours to process the data. The results also provide the
extrinsic parameters between the adjacent pairs which we
view as the ground truth. Next, we compare them with our
estimated extrinsic parameters between adjacent pairs.

The extrinsic parameters (Rir, tir) recovered by our
method refer to ones with respect to the reference camera.
We can easily convert them into extrinsics between adjacent
cameras, i.e., (Ri(i+1), ti(i+1)). As shown in Fig. 6, the av-
erage error between our measurements vs. the ground truth
across all pairs is 3.4505 mm in translation and 0.012 rad
in rotation. Recall that the adjacent cameras are separate at
about 92 mm. So the translation differs at about 3.75% and
the view angle differs at about 3.12%. This indicates that
our estimation is of high accuracy. More importantly, our
method only requires 40 captures whereas we obtained the
ground truth using more than 1000 captures. Our technique
hence significantly improves the efficiency while maintain-
ing high accuracy.

3.2.3 Five-Camera System, With Street Views

In this experiment, we calibrate the extrinsic parameters of
five GoPro Hero4 cameras mounted on a circular frame, as
shown in Fig. 2(d). The system is built to capture panoram-
ic images with large vertical field of view and the minimum
number of cameras. As a result, the horizontal (with re-
spect to the circular frame) overlapping field of view is very
small.

Different from previous experiments, we do not use any
calibration target in the calibration. Instead, we detect the
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(a) (b)
Figure 6. Comparison with the calibration result obtained by MATLAB stereo calibrator. (a) Difference of the estimated Ri(i+1). (b)
Difference of the estimated ti(i+1).

(a) (b)
Figure 7. Calibration with street view images. (a) The inliers
(green dots) and outliers (red dots) in one of the images taken by
the reference camera. (b) The recovered camera poses.

Figure 8. Rectified street view images with the estimated extrin-
sic parameters. We have marked some areas with blue circles for
easy inspection of the vertical parallax between the two rectified
images.

dominant planes in 15 street view images taken by each
camera to show the generality of our algorithm. As a re-
sult, the physical dimensions of the system cannot be re-
covered. Note that many computer vision tasks, such as
3D reconstruction, do not require the physical dimension.
Thus, we simply choose one camera as the reference cam-
era and estimate a scaling factor for each tir in this system.
All the cameras’ poses are initialized with plane-based SfM

and jointly refined with the task-specific bundle adjustmen-
t. ϵ is set to 0.7 in this experiment. One example of inlier
points after bundle adjustment is shown in Fig. 7(a).

We show the estimated poses of the five cameras in
Fig. 7(b). We can see from the figure that the estimated
camera poses respect the geometric structure of the circular
frame. To further examine the performance of our method,
we also apply the calibrated extrinsic parameters to recti-
fy a neighboring pair of images. The result is shown in
Fig. 8. Although the overlapping field of view is very smal-
l in this case, we can see that the image pair still exhibits
nearly pure-horizontal parallax, verifying the robustness of
our algorithm.

4. Conclusion

In this paper, we proposed a robust and flexible calibra-
tion method based on planar patterns with unknown geo-
metric parameters for calibrating multiple camera system
with non-overlapping FoVs. Our method starts with the
structure and motion recovery with a scene plane for each
camera. Specifically, given a set of matched feature points
across frames, we use a consensus method to detect the in-
lier trajectories corresponding to the plane, and estimate the
homographies induced by the camera motion. The extrinsic
camera parameters are then obtained by decomposing the
homographies and solving a linear least-squares problem
between camera pairs. We have further developed a task-
specific bundle adjustment algorithm to jointly refine the
structure and motion parameters with respect to all cameras.
Experiment results on both synthetic data and real camera
systems have demonstrated the effectiveness and efficiency
of our method.

As future work, besides calibrating extrinsic parameters
from street views, we plan to investigate reliable mechanis-
m to obtain the intrinsic parameters by analyzing the geo-
metric parameters of the dominant planes in natural video
sequences. Such a method will benefit various applications
such as stereo panoramic stitching and robotic navigation.
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